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Partition function, metastability, and kinetics of the escape transition for an ideal chain
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An end-tethered polymer chain squeezed between two pistons undergoes an abrupt transition from a con-
fined coil state to an inhomogeneous flower-like conformation partially escaped from the gap. We present a
rigorous analytical theory for the equilibrium and kinetic aspects of this phenomenon for a Gaussian chain.
Applying the analogy with the problem of the adsorption of an ideal chain constrained by one of its ends, we
obtain a closed analytical expression for the exact partition function. Various equilibrium thermodynamic
characteristicgthe fraction of imprisoned segments, the average compression, and latera) fwecealculated
as a function of the piston separation. The force versus separation curve is studied in two complementary
statistical ensembles, the constant force and the constant confinement width ones. The differences in these
force curves are significant in the transition region for large systems, but disappear for small systems. The
effects of metastability are analyzed by introducing the Landau free energy as a function of the chain stretch-
ing, which serves as the order parameter. The phase diagram showing the binodal and two spinodal lines is
presented. We obtain the barrier heights between the stable and metastable states in the free energy landscape.
The mean first passage time, i.e., the lifetime of the metastable coil and flower states, is estimated on the basis
of the Fokker-Planck formalism. Equilibrium analytical theory for a Gaussian chain is complemented by
numerical calculations for a lattice freely jointed chain model.
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[. INTRODUCTION e.g., when there is a specific geometry with a large surface-
to-volume ratio. A phase transition on the level of a single
Phase transitions in macromolecular systems can be furmolecule is therefore not obvious; a single macromolecule
damentally divided into two classes. The first class occurs imlways consists of a finite number of segments, ususlly
the condensed bulk matter, involves a macroscopically large- 10°~1¢, so that finite-size effects in single-molecule
number of molecules, and is basically similar to that in ordi-phase transitions are the rule rather than the exception. As a
nary fluids or solids. The size of a single molecule plays onlyresult, in real systems the phase transition must remain
a minor role in the nature of these transitions at least as far &mooth. However, if in théacademiglimit of infinite length
the equilibrium aspects are concerned. Crystallization, segréf the chain the transition becomes first order, one usually
gation of incompatible liquids, and liquid-crystalline order- Still refers to the transition as first-order-like, even for
ing can serve as examplgs-3]. The second class of phase finite N. ) ) ) )
transitions belongs exclusively to the realm of polymers The goal of this paper is to present a rigorous analytical
since it is realized at the level of a single macromolecule an(iljheory for a phase transition in a single macromolecule that
does not have any analogy in the physics of low moleculaf'@S received much attention recently, nam.ely the escape tran-
mass systems. The best-known examples are the coil-globufét'on observed for an end-tethered chain compressed be-

[4] and coil-stretcH5] transitions, as well as adsorption at a WEEN WO pistong8-1§. At weak compressions, the chain
solid-liquid interface(6,7]. is deformed uniformly to make a relatively thick pancake;

The concept of a phase transition always requires one ttPnhe resistance force due to the compressed chain increases
be in the thermodynamic limit. When the first derivatives of onotonously as the distance between wo pistéhsde-

he f h ) . h . h creases. Beyond a certain critical compression, the chain
the free energy change jumpwise at the transition one Nas 4,465 conformation abruptly. One part of the chain forms a
do W'.t.h a transition of the first-order type. F_|rst—order IC’hasestem stretching from the anchoring point to the piston edge,
transitions have a more gradual character in small system

While the remainder of the chain forms a coiled crown out-

side the pistons, thus escaping from underneath the piston.

The resistance force decrease abruptly, indicating a first-
*On leave from the Institute of Macromolecular Compounds oforder transition.

the Russian Academy of Sciences, Bolshoy prospect 31, 199004, St. First-order transitions are associated with the existence of

Petersburg, Russia. metastable states that are stable with respect to small fluc-
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tuations. A metastable state decays with a finite rate, which ifree energy barrier to be overcome by a compressed chain in
mostly controlled by the nucleation barrier. Metastable statesrder to escape is due to the elastic free energy invested in
are especially important for polymer systems. The relaxationhe stretching. However, the kinetic aspects of the problem
of a metastable conformation involves the reorganization ofvere never explicitly investigated. Moreover, even the bar-

many segments of the chain, which makes it intrinsicallyrier height determining the lifetime of a metastable escaped
slow. A rigorous description of metastable states in polymefower was not discussed.

strategic direction in treating these problems is to select a : ; :
order parameter and to construct with this the Landau freBy Enniset al. using numerical methods.0]. We start from

energy. Typically, the order parameter has to be defined as(‘%}jln a’?"?""gy betweep an escape _transition.and a coil-to-flower
local fluctuating quantity and the Landau free energy is dransition for a chain near a solid adsor_blng surface to con-
functional of this order parameter field. According to theStrucF a closed—fo'rr_n gnalyﬂcal expression for thg partition
fluctuation theory of phase transitions, the importance of thdunction. The equilibrium thermodynamic properties of the
correlated fluctuations of the order paramesés character- transition for_qhams of_ arbitrary length follow immediately
ized by its relative fluctuations or the Ginzburg number Gifrom the partition function. To analyze metastable states and
=((s?~(s)?)/(s?), where the averaging is performed over thekinetic aspects of the phenomgnon we introduce the order
region of order? defined by the correlation lengthy [25].  Parameter and calculate analytically the Landau free energy.
When Gi< 1, a simple mean-field approach is applicable. AThe complete phase diagram including the coexistence line
very well known example is the transition to a superconduct2nd two spinodal lines follows naturally from this result. We
comes very involved mathematically and requires renormal€quilibrium states and apply the Fokker-Planck equation for-
ization group methods. malism to find analytically the mean first passage time char-
In contrast to classical examples of phase transitions suchcterizing the lifetimes of metastable states. When appropri-
escape transition can be described by a global order pararfibain are presented to complement the arguments.
eter characterizing the polymer chain as a whole, rather than
one of its local properties. Defining the order parameter as d!- ESCAPE TRANSITION MODEL AND ITS ANALOGIES

single global variable eliminates the problem of accounting \ye gre dealing with an ideal Gaussian chainNbseg-

for the order parameter fluctuations of various wave VeGtor ments with the contour lengtNa. The chain is compressed
The only fluctuations possible are also of global nature: inyetween two pistons of radius and end-anchored at the
the language of classical examples they are characterized R¥nter of one of the piston surfacgg. 1). The separation
G=0. Although in our problem the Ginzburg number may notpetween the pistons id.

always be small, the fluctuations of the global order param- f the piston size is so large that the chain never leaves the

eter can be treated exactly in a straightforward way withoulap | >Na, the solution for the Green’s function is well-
resorting to any approximate scheme. This approach wag,own [20]

used for describing the coil-stretch and coil-to-flower transi-
tions[19], and we are going to pursue this path in the present 2aw,  [mnz\  [mnz R, 2
paper again. G(z7)= EE Sln(? sin| —— |exp -

Note that a direct analogy in a classical magnetic system n=t
with a globally defined order parameter is rather trivial since (1)
fluctuations vanish completely in the thermodynamic limit.
However, a single coil-like macromolecule in solution is

nomal in th nse that its size remains strongly fl . X . . !
anomaous In the sense that its size remains strongly fluct he gyration radius of the Gaussian coil. Since we are inter-

ating (it is of the order of its sizeeven forN—c [2,3]. . . . "
Tgllw(e equilibrium properties 0)? the escape tra[ns?t]ion Wereested in the effects due to chain squeezing, the contribution

. ; . . of the first term in the sum is dominant. With one chain end
':;gjg%ﬁg[ltg iguggéycgﬁ;ﬁ?gﬁ;ggﬁ%g]’12u1n;e.rr'ﬁzl attached at distanc&from the impenetrable surface, and the

main result relates the critical compression distadceo the other one being anywhere, the partition function reduces to
piston radiusl., and the chain lengtiNa. For ideal chains, it 4 p( N( Wa)2)

wherez and 2’ are the coordinates of the two chain ends
long the axis normal to the piston surface, &dayN/6 is

H (2)

é
is given by H'~Na/L. Excluded-volume interactions Q(H,N) = LA~ 5
change the relationship betweefi and theN/L ratio, H*
~(Na/L)”"1 wherev~3/5, but the nature of the transi- Apart from the preexponential term, which can be neglected
tion remains the sam8,9]. In their pioneering paper based (as demonstrated by numerical estimatése confinement
on the blob picture of the compressed and escaped phas&dfect is equivalent to introducing an effective potential per
Subramaniaret al. [8,9] predicted the possibility of meta- segmentu=kT/6(ma/H)2 The nature of this effective po-
stable states and indicated the broad range of parameteential is purely entropic. In the following, we ugd as the

within which these states exist. They also indicated that thenergy unit and omit it in the equations.
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—D
FIG. 1. Free end-point distributions as found
J, by numerical freely jointed chain modébor de-
H e — O ' tails see the Appendjxithout excluded volume,
T for three different systems featuring single chain
conformational phase transitions of the coil-to-

@) (b) © flower type.N=425 in all cases. A, B, C: The

escape from a confinement. The chain is grafted
by one end at the center of two cylindrical pistons
‘ with radiusL=45 and separated by a distartde
. . . =4, 5,6 in A, B, and C, respectively. In this ex-
ample radial distributions are shown instead of a
cross section. D, E, F: The escape from a step-
wise external potential= 72/ (6H?) with H as in
A, B, C, respectively. G, H, I: The escape towards
L the adsorbing surface=m/H with H as in A, B,
C, respectively. The systems A, D, and G are the
coil states. The chains in C, F, and | are in the
flower conformation, whereas the systems B, E,
and H are close to the transition point.

() ()

- .
(9) (h) /e (i) 1/¢c

In the general case of arbitraty and N, when the par- tjties will be scaled by the gyration radius of the chdin,

tially escaped configurations cannot be neglected, the com- ~ . . i
plete solution for the Green’s function is not known. It is ~L/2R,, andH=H/mR, The partition function of the ad

clear, however, that the escape problem can be reduced %)rpuon problem has the following forf,21]:

that of a chain in a step potential, which has a constant value
u inside the gap and is zero outsi@d. Fig. 1). This analogy
was first pointed out by Sevick and Williani$6].

The partition function of an end-tethered chain in a step
potential was found in an integral form, but does not have avhereY(x)=exp(x?)[1-erix)], and erfx) is the error func-
simple analytical representatidh]. However, another im- tion.
portant analogy was established recently, namely, between a One has also to take into account the overall free energy
chain in the step-potential problem and a chain end-tetheresghift, Nu, which exists for the chain between two pistons, as
at some distance away from an adsorbing solid surfa®e  compared to the chain near an adsorbing surface. Finally, the
(cf. Fig. 1. This analogy can be easily understood in thepartition function for the escape problem can be written as
language of effective potentials. The free energy per segmefigllows:
in the adsorbed part of the chain i$ca)?/6 wherec is the
adsorption strength parameténe de Gennes’ inverse corre- _ _ L
lation length of adsorption3]). Hence we are once again  Q(H,L,N) = exp(—- H®){erf(L) + exp(— L3 Y(L - H™)}.
dealing with effects similar to those of a step potential, (4)
which is zero for the part of the chain between the tethered
end and the first segment in contact with the surface, and
—(ca)?/6 for the rest of the chain. Combining all tree analo- The partition function depends explicitly only on two dimen-

gies, we conclude that the escape problem can be reduced dgnless scaling variablek:andH. The quantityH2 has the
the adsorption problem for a chain end-fixed at distance interpretation of the confinement free enerlyy, per chain
from a solid surface of adsorption strengthk /H. This iy the imprisoned coil state. The analysis of the adsorption
reduction is especially important since the adsorption probproplem [22] established that there is an abrupt transition
lem is the only one that admits a closed-form analyticalnat takes place at”=L/R2. In the language of the escape
evaluation of the partition function for chains of arbitrary transition, this leads to the binodal condition
length.

Mathematically, the triple analogy was firmly established
[19], and we are going to exploit it extensively. H _mNa

a6l ©

Q(c,L,N) =erf(L) + exp- L)Y(L - cRy) 3)

Ill. CLOSED FORM OF THE PARTITION FUNCTION

FOR FINITE CHAINS .. . . Lo ~
The transition is abrupt in the limits>1 andH>1. The

In the following it will be useful to introduce reduced two asymptotic branches of the free energy=
values for the piston radius and the confinement. Both quan-In Q(H,L,N) are given by
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FIG. 2. Free energy per segméntN as a function of separation ) _ )
distanceH. Two branches of free energy corresponding to the coil ~ FIG. 3. Average fraction of imprisoned segmeris)=(M)/N
state(large values of) and the flower statésmall values o) are ~ as a function of the confinement width/a for L/a=45 andN

dotted;L=90: N=800. The branches cross at=4.65. =400, 600, and 800 arld/a=90,N=800(dotted ling as indicated.
1( 7Ta>2 \ 1, H>H"
~|—], H>H
' my={3H L . 8
F_J6\H © (m) SHL ow (8
N mL . maNa
__’ H < H .y . * . .
HN At the transition pointH=H", (m) asymptotically jumps

from the value of unity to one-half. For any finiftd, the

where we see that there are two natural parameters in tHeaction of imprisoned segments at the middle point of the
systemH/a andN/L. We note that since the system is ather-transition equals 2/3 to a very high accuracy.
mal, the free energy is essentially reduced to the entropic Figure 3 demonstrates the curv@s) vs H/a for a fixed
contribution. The two branches are presented in Fig. 2 fopiston radiusL/a=45 and three different chain lengtié
L=90,N=800. The continuations of these branches point tc=400, 600, and 800. For large piston separation, all the seg-
the possibility of metastable states. Figure 2 shows clearlynents reside within the confined region. Aglecreases, less
the binodal point. Because of the finite length of the chainsegments remain inside. With increasihgthe transition
the transition is not yet sharp. point shifts to larger values afl, since longer chains are

For moderate values~1 andH ~ 1 all the intermediate €asier to squeeze out. Contrary to naive expectations, the
states are important, and they are accounted for in the closdfgnsition becomes less sharp for longer chaaisfixedL).
form of the partition function. Equatiord) allows for the  This is due to the fact that the coil size approaches the piston

analytical evaluation of all average characteristics of the essize. On the other hand, if one compares the sharpness of the
cape transition for arbitrary chain lengths. curves at a fixed./(Na) ratio it is clear that a larger value of

N results in a sharper transition. In the thermodynamic limit
N,L — <0, while keeping the ratio./N constant{m) has a
IV. EQUILIBRIUM CHARACTERISTICS jump.

A. Average number of imprisoned segments

. . . B. Fluctuations of the number of imprisoned segments
From the analogy with the chain anchored near a step-like

external potential, we know that the average number of seg- Differentiating(m) with respect tou give us the reduced
ments between the pistor4), can be found by considering average square of fluctuations in thg number of imprisoned
the free energy as a function of potential per segmerand segments{(8M)?)/N2. These fluctuations are presented in
differentiating it with respect to. Expressed in terms of the Fig. 4. As far as theN-dependence is concerned, one can
parameters of the escape problem, it has the following formdistinguish three different regimes. At large piston separa-
tions, when the coil is the equilibrium state, fluctuations in
- the number of imprisoned segments are completely negli-
(= M) _ 1- exp-L*-H™ gible. Also atH<H", the equilibrium flower state results in
N Q(I ﬁ) typical fluctuationssM ~ N, characteristic of standard ther-
' modynamic behavior. Finally, near the transition point itself,
~ o~ e the fluctuations irM are proportionate to the total number of
~Y(L-HY(LH-1) (7)  segmentspM ~N, and do not depend on the piston radius,
L. This can be easily understood from the two-state picture,
where the system fluctuates between the coil state with the
which definesm as the fraction of confined segments. Thefraction of imprisoned segments being equal to 1, and the
two asymptotic branches are given by flower state with the fraction of imprisoned segments being

e

X

/

A%

3

061101-4



PARTITION FUNCTION, METASTABILITY, AND... PHYSICAL REVIEW E 69, 061101(2004)

T 1.6
(LN} =

0.06 -  (90,800) .y
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_ (90,800)
0 | 3
() e - 2 4 6 8 10 12
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Hia FIG. 5. Lateral forcd| as a function of confinement widtd/a

FIG. 4. Fluctuations of the fraction of imprisoned segments as d0r L/a=45 andN=200, 400, and 800 and fdr/a=90, N=800
function of confinement widtt/a for L/a=45 andN=400, 600, (dotted ling as indicated.
and 800 and fot./a=90, N=800 (dotted ling as indicated.

length. One can relate the fraction of confined segments dis-

equal to 1/2. The maximum fluctuation is achieved wherPlayed in Fig. 3 with the corresponding lateral force. When
these two states have equal probabilities of 1/2, which givedll the segments reside within the confined region, the lateral
((8M)?)=N?/16, which is close to the exact numerical val- force drops to zero. Asl decreases, more segments escape
ues. If the chain length, is fixed, and instead the piston from the confinement and the force increases. At the transi-
radius is changed, the height of the peak remains constarfton point both the lateral force and the fraction of impris-
while its characteristic width varies 4s2. oned segments change abruptly. With increasintpe tran-

The detailed distribution in the number of imprisoned seg-Sition point shifts to larger values 1, since longer chains
ments was obtained earlier for the problem of the chain in &€ €asier to squeeze out. Again, the transition becomes less
step potential [5,23,24. The non-normalized statistical sharp for longer chains, which once more must be attributed

weights are given by the following expressions: to the fact that, with fixed piston dimensidnand increasing
values ofN, the coil size approaches that of the piston. If
1 M(ma\? 3L? instead one compares the sharpness of the curves at a fixed

ﬂmex “6\H/) oM M<N L/(Na) ratio, it is clear that larger values df result in
W(M) = L sharper transitions.

erf(—), M =N.

2Ry
(9) D. Compression force

If the confinement widthH is taken as an independent
variable, the compression force can be obtained by differen-

tiating the free energ¥=-In Q with respect toH:
There exists a lateral force applied to the anchoring point

C. Lateral force

where the chain end is attached to the surface of the piston. () = ﬁ(M) (12)
This force is given by the derivative of the free energy with R~ g3 '
respect ta_: . )
The two asymptotic branches being:
T Q-1 | -1
‘= erfc(L H~ )~ex~p( 2LH ). (10 Na2 o
Q(L,H)HRy ; 3H3 13
The two asymptotic branches are : L H<H
H2’ '
0, H>H
fi~1{m . (11)  In the thermodynamic limit, at the transition poim=H",
o H<H. the force jumps from 72%/(wN?%a* to exactly half this
value.
At the transition pointf, jumps from zero td_a/R?. Fig- In Fig. 6 the compression force is given for two values of

ure 5 displays the lateral force as a functiontbfa for the L andN as indicated. Indeed there is a jump from H€ to
piston sized =45 and chain lengthN=200, 400, and 800. It the H™2 dependence exactly at the point where part of the
is clear that in the confined coil state, the lateral force vanchain escapes from the gap. Again, it is seen that at fixed
ishes. Once the escaped conformation appears, the force d@tio L/N the transition becomes more sharp with increasing
pends only on the confinement width but not on the chairchain length.
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30

FIG. 6. (a) Average compression forgé,) as
a function of the confinement widtii/a for
L/a=45,N=400, 600, and 800, and/a=90, N
=800 as indicatedb) Normalized average com-
pression force as a function of the normalized
separation, for fixedNa/L=100/15, for N
= =100, 200, 400, 800, and 1200 as indicatéd.
0 ' ! L TETEE 06—ttt was determined from the Maxwell rule.

(45,400) ™,
PN o

N, U880

An important observation follows from the figures pre- point. In other words, the polymer is at each moment during
sented: in order to observe a sharp change in the properlyie escape transition in either the coil or in the flower state,
calculated equilibrium average characteristics, very longout these two states never coexist simultaneopisy. It was
chains are required, witN at least several hundred. This is argued though, that in théN,L,f,) ensemble(where the
due to the fact that squeezing a chain even down to theompression force is fixaédhe curve of the average separa-
thickness of just 3 segment lengths results in a fairly weakion, (H), versus f, will contain a vertical segment
effective potential per segment;~0.14. [13,14,16. Of course, this is not possible as we will show

Thermodynamics introduces the notion of extensive angelow.
intensive variables. As a rule, the total number of particles, A naive thermodynamic consideration concludes that the
N, and the total volume serve as extensive variables: Thigelevant potentials for the two ensembiéise Gibbs and the
results in the well-known Gibbs-Duhem relationship for the Helmholtz free energigsare related to each other by a Leg-
Gibbs free energy. The system we are dealing with presentlgndre transformation:
is more intricate. It is clear from E@6) for the limiting form
of the free energy that there is no single variable that is G(N,L,fy) =F(N,L,H) + fyH. (16)
extensive in the whole range of parameters. Instead, each of
the two branches df has its own extensive variable: this is From the two asymptotic branches of the Helmholtz energy,
N for the confined coil state and for the escaped flower F, given by Eq.(6), and the forcefy, [Eq. (13)], one obtains
state. As a result, there are two separate relationships analo-
gous to the Gibbs-Duhem equation. For the coil stéte, }N1’3(3 £023 gL < f
=Nu(H), and therefore G(N,L,fy) =12 mh) o TH (17)

1/2 *
(9_: _ fNH (14) 2(mLfy)™s, fy>1.
J The two branches match zftf:(g)4L3/(7rN2a4), this auto-
For the flower statefF=L(7/H)=LF_(H), which leads to matically satisfies the Maxwell’'s rule for thé,) vs H iso-
gf therm, see Fig..6. . . S
—L_H (15) Of course this approach fails to incorporate finite-size ef-
dH L fects. The complete description must be based on the rela-

The fact that an extensive variable does exist implies certionship between the partition functions rather than the ther-

tain homogeneity of the system. One would expect this propMedynamic potentials.

erty to break down if the coil is squeezed between, e.g., 10 find the partition function for théN,L,fy) ensemble
curved or nonparallel surfaces. one has to take the number of configurations at a given value

of H, include the Boltzmann weight associated with the ex-
ternal force, exp-fyH), and integrate over all values of the

V. ESCAPE TRANSITION IN THE CONSTANT piston separatiof:
FORCE ENSEMBLE
In the literature, there is an extensive discussion on the QG(NlLny):f Q(N,L,H)exp- fyH)dH.  (18)
0

features of the escape transition in two different statistical
ensembles: théN,L,H) ensemble, where the confinement

width serves as an independent variable, and(bhg., f . . . .
P (Mhd, fyy) Ioten'uals follows from this general expression only in the

ensemble, where the independent variable is the external . . . ; I
: : . Imit when the integral is reduced to the single contribution
compression forc§l3,14,16. The discussion was prompted . ;
at the maximum of the integrand.

by the observation that the average compression force asa The average widthH) is given b
function of the confinement widtKf)(H), displays a non- 9 9 y
monotonic behavior. This nonmonotonic form of the force 1 (=
curve should not be identified as a van der Waals loop; the (Hy= —f Q(N,L,H)exp(- fyH)HdH. (19
force curve crosses the binodal just once, at the transition QsJo

The Legendre transformatiofl6) for the thermodynamic
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FIG. 7. Scaled average confinement fotég/f")/H" (left y axis) as a function of the normalized confinement widthH" (bottomx
axis) as well as the scaled average confinement wiblthH") (top x axis) as a function of the scaled compression fofgéf™ (right y axis)
for Na/L=100/15:(a) N=1200 and(b) N=200.

Figure 7 demonstrates how one and the same phenom- In particular, we generate the radial end-point distribution
enon(escape transitigroccurs in complementary ensembles functions and analyze the way they change as a function of
both in large and in small systems. In this graph we preserthe piston sizé./a, Fig. 8(in Fig. 1 results are shown for the
on the lefty axis the average compression force normalizeccase thaH/a was varied at fixed./a). For N=400 andH
to f*, which is a function of the normalized confinement =5a, the chain is clearly confined whein=46a. For H
width (bottomx axis). In the complementary force ensemble <44a, the chain takes a partially escaped conformation as
the average confineme¢il) normalized toH" (topx axis)is  the probability of the chain end to remain in the gap between
found as a function of the confinement forgegght y axis).  the pistons becomes a minority=45a seems to be close to
Both sets of graphs in panefa) and (b) correspond to the the transition point. The distribution is clearly bimodal sug-
same ratioL/Na=0.15, but in Fig. 7a) the system is much gesting the existence of two sets of conformations, and the
closer to the thermodynamic limit &=1200 as compared two peaks are approximately of the same height. For the
to the length of the chailN=200 for Fig. 7b). parameters chosen, the analytical theory predicts the binodal

From Fig. 7 two observations can be made. First, the twat H =4.65, which is very closgone has to keep in mind
ensembles are not equivalent in the vicinity of the transitionsome arbitrariness that exists in lattice models when dealing
The average normalized force jumps by a factor of 2 fromwith distances less than the lattice constaBimodality of
36129 to 3%/21° but the normalized average distance dropsthe distribution exists for other values 6f/a as well, al-
from 72/64 to a value 54/64. Out of the transition regionthough it can be discerned only on a log scale. Hor 8a,
(54/64H" <H<(72/64H" the two ensembles give the the local maximum corresponding to the end positions out-
same force-distance relation. side the slit disappears suggesting that the flower state be-

Second, for small systems the difference between th€omes completely unstable.
force-distance curves obtained in the two ensembles gradu- The position of the free end may be considered as a can-
ally disappears also in the transition region. didate for the order parameter. Then, the logarithm of the end

The discussion of the picture of the escape transition irflistribution will give the Landau free energy. However, this
two ensembles was originally motivated by the analogy with
the gas—liquid transition. It was noted already that this anal- ‘ | |
ogy is not quite straightforward: for the escape transition, :.-" A
one cannot speak of a simultaneous coexistence of two AN
phases in the same sense as coexisting liquid and vapor :
within the same vessé¢pR5]. S/ NN

A. End-point distributions by numerical lattice calculations i W\

In order to obtain some more detailed information on the
escape problem and to establish the validity range of the X
analytical theory for Gaussian chains based on the analogy
with the adsorption and the step-potential problems we have o 10 20 30 4050 607080
performed numerical calculations for a freely jointed chain
model on a cylindrical lattice that takes into account the FIG. 8. End-point distribution for freely jointed chain with
exact piston geometry. For details we refer to the Appendix=5 andN=400, for various values of the piston sizes indicated.
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choice fails to fulfill a certain natural requirement, as dis-tions are based on the step-potential analogy suggested by

cussed in the next section. Sevick and Williams[16]. The coil branch is defined as
<I>C0i|(s)=—ﬁln Geoil(), whereG;(s) is the Green’s function
B. Order parameter and Landau function of the coil between pistons with one end fixed a0 and the

Th t partition functi tai tributi ; other end aty=sNacalculated under condition that no seg-
€ exact partition function contains contributions rom o aytands beyond=L. This is ensured by imposing a

all chain conflguratl_ons including those associated Wlthvanishing boundary condition at a fictitious surface placed at
metastable statdprovided the parameter values allow Meta- jistancer =L+ . Utilizing the results of the standard reflec-

stability). HO"VeV‘?“ these. contr|but|on.s are masked, and ONGon method for a 1D problem, the solution for the cylindrical
has to take special care in order to single them out and an jeometry can be written as

lyze metastable statgser se The approach of the Landau

theory is ideally suited specifically for this task. In the Lan- 3r 3r2 6oL

dau theory, all the configurations are first subdivided into sets ~ G_;(ry) = —Nzexp<— N2 _ Nu) 1- (1 _ _2>
associated with a given value of the order paramsteand Na 2Na Na
summation is performed separately within each set. The full L

partition function can be obtained then by integrating over XGXP{— GN—az(L— rN):| : (21)

the order parameter:
Taking é=al/6 according to[5], rewriting everything in
exp -F :f dsexg— N&(s)] (20)  terms of the order parametgrand including the Jacobian of
the transformationgry/ds=Na, we finally obtain
where ®(s) is the Landau function, that is, the nonequilib-
rium free energy taken as a function of the order parameter. _ 32 (. L
In the close vicinity of the transition point, the Landau free Geoi(s) = 3Ns ex 2st Nujji-|1 Na
energy is expected to have two minirt@ne stable and the
other metastabje Our analysis will be focused on finding Xexp[— 6L<L _Sﬂ _ (22)
the metastable minima and the associated thermodynamic Na\Na
characteristics, as well as the height of the barrier separating . . .
- ) ) The maximum value of the order parameter in the coll
the local minimum from the global one which determines the, . . .. .
e state is achieved when the free end is just touching the edge
lifetime of the metastable state. of the piston

The proper choice of the order parameter is not always he i f ion is inh d onl
obvious, nor are there any standard recipes for making it T e flower conformation Is innomogeneous, and only one
' part is stretched. The corresponding branch of the Landau

One criterion is quite clear: the average value of the orde ree energy is written as
parameter should allow one to distinguish between two
phases. For a first-order transition, the average order param- 1
eter changes jumpwise. We require that the properly chosen Dy = = =IN[GgtenfN) QerowrdN = M. (23)
order parameter changes continuously as the system evolves N

from a metastable state, through the transition state at the to_P ) i . .
of the barrier, and eventually falls into the equilibrium mini- | € Stem is defined as a subchain starting from the anchored

mum. As a response to the confinemeinthe ideal coil state  chain end and ending with the first segment to reach the edge
is perturbed. Before the chain can escape from the unfavoff the pistons. Again, the Green's function of the stem has to
able state, it must be stretched to reach the region outside tf§¢ c@lculated with the vanishing boundary condition men-
pistons. A seed crown is formed that grows subsequently 4#{oned above. The resultis well knows] and for the case of

the expense of the stem until the equilibrium state is reacheY!indrical geometry of the space between two pistons has

In this process, it is the chain stretching parameter that growi'e following form:

continuously. For the deformed coil, the parameter refers to L\3 312

the chain as a wholes=ry/Na, wherery=\x3+y? is the GerenlN) = 3<—> exp(— — - nu). (24)

radial distance from the center of the pistganchoring na 2na

point). However, using the chain end position as the order N . ) )

parameter for the flower state is not appropriate: The result e partition function of ariN-n)-segment chain end-fixed

ant average order parameter for flower conformations turndt the step potential was calculated exactly if£3,24 and

out to be independent of the magnitude of the effectivelS given by

fields,u. Thus it cannot discriminate between various flower

conformations. Since the field magnitude affects the stretch- Quo(N=1) = ex;(— u(N - n))I (u(N - n)) (25)

ing of the stem, we choose the order parameter in the flower crown 2 0 2

conformation as the stretching of the stem ordy:L /na,

where n is the number of segments in the stem. The twowherel, is the modified Bessel’s function.

definitions match smoothly af,=La, n=N. Expressed in terms of the order parameter the restricted
Accordingly, the Landau function consists of two partition function(with the proper Jacobiasn/ds=L/sa) is

branches that have to be introduced separately. Our calculgiven by
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FIG. 9. The Landau free energy as a function of the order parametér &¥90, N=800 and various values of the confinement width
H=3, 4, 5, and 8(a) Analytical results for the Gaussian chain il numerical freely jointed chain model.

N9 _ ok uN uL _ It is of considerable interest to discu_ss the relati_vely small
e = 355 RN~ 28 2 lo o " 2as) differences between the Gaussian chain results, . &nd
the freely jointed chain model, Fig(l9. Both results apply
(26)  to the case that the excluded volume of the chains is ignored,
owever, the freely jointed chain has a finite extensibility of
e chain and the Gaussian chain has not. The difference
ecomes relevant in the limit of strongly stretched chains.
his means that this is the case for large values of the
stretching parametes. Indeed, inspection reveals that the
curves become insensitive to the valugbfor largesin the

For the escape transition to have an abrupt character, t
following conditions should be satisfietit>1 anduN> 1.
Using the asymptotic representation of the modified Bessel’
function and neglecting the terms of ordét* one arrives at
the following simple analytical expressions:

3 1/ a2 L freely jointed chain model, whereas there remains a com-
552+5<F) , SRS Na pression distance dependence in the Gaussian chain case.
d(s,H) ~ ) (27)  Near the transition, however, the finite extensibility effects
s, L(@) i L are not important. The changes for snmilalues are due to
2Nas 6Na\ H / s’ S= Na the fact that the finite discretization used in the freely jointed

chain model leads to artifacts for very small valuedHof
where we have expressadin terms of the confinement _ _ N
width, H. Integrating over the order parameter according to C. Binodal and spinodal conditions

Eqg. (20), we can recover the partition functions for the coil  The minimum of the Landau function determines the av-
and the flower states separately. _erage value of the order parameter in ¢feeal) minimum of

The conditions that we have used can be rewritten inhe system. The binodal condition is found when the two
terms ofH in the formR,/H>1, whereR, is the gyration  minima of the Landau function are equally deep. To simplify
radius of a nondeformed coil. It is clear that in this limit the the analysis of the binodal and spinodal conditions we use
two natural dlmens_lc_nnless parameters that deﬂne all aspedige asymptotic expressiga7) for the Landau free energy, as
of the escape transition are the ratio of the confinement widtgpposed to the exact equations illustrated in Fig. 9. Then, the
to the Segment Iengtfh-lla, and the ratio of the piston radius Compressed coil minimum is located st0 and has the

to the contour length of the chaib/Na. The importance of depth of(I)(O)=%(”Wa)2. The minimum corresponding to the

this choice is due to the fact that both parameters serve Acaped flower state is found st=22, its depth being
intensive variables in describing the escape transition. c s

: ®(S.c) = 2=. This leads to the binodal condition of EG).
The Landau free energy calculated according to E2. S¢ ~ NH . ) .
and (26) is presented in Fig.(@) as a function of the order With the decrease in the confinement width, the escaped

parameter for various values of the confinement widtand flower state becomes metastable. Once the height of the bar-
for fixed valuesl/a=45. N=400. It is clear that the two rier separating this minimum from the stable equilibrium
branches of the Landa{u function match each othes at vanishes, metastability is lost. This happens when the posi-

=L/Na. Neither the shape of the coil branch nor the pointtlon of the escaped state minimusg,; coincides with the

.. . L . i .
where the two branches meet depend on the confinemeRPSition of the barries,=gz. Thus the spinodal condition is

width H, whereas the flower state branch is of course af9'Ven by

fected by it. With a decrease h, the minimum in the flower H* #Na
branch becomes more pronounced. Changingesults also =5
. . a 3L
in an overall shift of the Landau free energy curve along the

vertical axes, but this does not have any effect as far as thgat is, metastability is lost completely when the confinement
transition is concerned. width is twice as small as given by the binodal line.

(28)
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We mentioned earlier that the condition for the escape 04
transition to be of abrupt nature Ry/H> 1. Combined with L
the binodal equation, this leads téR,> 1. It is clear that in
this case the compressed coil state is metastable irrespective 03T
of the value of the confinement width, since the coil branch -
of the Landau function is unaffected by change#iin 9 02 |

The compressed coil state will become unstable only if %
the radius of the piston is comparable to the gyration radius B
of coil. Formally, this condition is found by requiring that the oLk
barrier height in the Landau functiocalculated for the
whole chain be equal to kT:

~ 0 ! ! ! L
P(sp) ~P(0)=N"* (29 0 2 4 6 8 10
H/a
which yields

o FIG. 10. Phase diagram including one binodgland two spin-

(L) =2 (30) odal lines(2) and(3) for N=800 in theL/Na andH/a coordinates.
Rg ' The path following the points ABCDEF will be discussed in the

text.

D. Barrier heights separating the stable Eqg.(30) and the spinodal line corresponding to the instability
and the metastable states of the flower conformation. The latter spinodal is basically

The analytical expressions for the Landau free energy alEd- (28) including the finite-size effects following from Eq.
low us to compute the height of the barrier separating thé34 and has the form
coil and the escaped flower minima. The barrier height "
counted from the coil state minimum, in scaling variables, is < L ) _ma_a (35)

simply given by Na/ ~3H ﬁg

Ao = L2 (31) We stress that we are interested in studying the region of
universal behavior, where the confinement witithshould

and has the meaning of the elastic free energy of stretchinge at least a few segment lengths. The region of extreme
the chain to the edge of the piston. The barrier heightompressiorH <1 (not shown in the diagraynwas studied

counted from the flower state minimum is equal to extensively by Ennigt al. [10]. Of course, under these con-
~ 1 o~ ditions the compression entropy and the stem elasticity be-
Ag=(H"-L) (32)  come strongly dependent on the details of the model used

(lattice vs off-lattice, persistent vs freely jointed, etc., includ-

""_1 -~ . . .
for H™*=L. The spinodal condition corresponding to a van—ing the particulars of the single-segment bond potential

ishing barrier is written in the scaling variablestas =L™". It is clear then that./Na ratio’s allowing the escape tran-
From this it is possible to show that the barrier height de=ijtion to be observed are rather small: fo=3 we get
pends on the proximity to the spinodal: L/Na~0.15 at the binodal. Combined with the condition
el e L/2R,>4 in order to have a fairly pronounced transition,
Ag=[H"-(H")"]~ (33 this leads to a strong requirement on the minimum chain

Finite-size correction to the spinodal condition given by Eg.length: N=2800. For the chain length chos¢N=800, all
(28) can be found by takingh;~1 which would give the lines nearly merge togethertdt- 10, comparable to the

(ﬁ_l)** =L+1. A more careful consideration aiso reveabgyratgt);lsgg;g sta:tels:l 2:11; .h steresis effects will be observed
other finite-size corrections due to the difference between the Y :

; " ) as one moves along the path ABCDEF shown in the phase
exact expression for the partition function of the crown,

: . : . diagram(Fig. 10. The first part of the proceg&BC) corre-
82’:; 2\2 I?gl.l(ozv,vs?s i?grét?haesﬁrr%f:ilgaﬁeggzlsesr;;ag??hg]?:avxgis_sponds to a gradual compression of a chain initially residing
j y in the confined coil state. If the compression proceeds

tion kinetics presented below, the actual spinodal condition

L . quickly enough the chain remains in the coil state even
for finite chains can be very accurately represented as though point C corresponds to the stable flower state. Once

AEY* =T +1/2. (34) e_nough waiti_ng tim_e is allowed to reach the stable equi_lib-
rium, the chain partially escapes and thus the state at point D

is not the same as at C. Now, the path is reve(8deF) and

the piston separation is gradually increased. At point E, one

finds the metastable escaped flower, but after crossing the
Figure 10 displays the phase diagram drawn for a finitespinodal line 2, this state disappears, and points F and A are

chain of lengthN=800. We show the binodal lind./Na)"  completely equivalent. The changes in the Landau free en-

=mal6H and the spinodal indicating the instability of the in ergy with decreasingl are shown in Fig. 9.

E. Phase diagram
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F. Transition kinetics tion of the coil stateQ., which can be taken out of the
The spinodal condition and the hysteresis effects dei_ntegral overs. The diffusion coefficienD(s) describes the

scribed above are actually of kinetic nature and depend Ogaynamlcs in terms of the variabk The conventional trans-

: : - : tional diffusion coefficienD for the center-of-mass coor-
the ratio of a typical experimental measurement time and th inate of a free-draining chain B=(N¢)-L, where is the

internal relaxation time. It is well known that relaxation time _. . . . .
friction coefficient per segment. Since the time required for a

for a process involving barrier crossing is exponential in the L g : . X
barrier height. Hence we expect the characteristic lifetime Oﬁertam displacement is invariant with respect to changing the
gnt. P = ynamic variable,(ds)?/D(s)=(d2)?/D. Recalling thats

a metastable coil to be of the order@f independent of the =z/N, one findsD(s)=N-3¢1.
confinement widttH. For a metastable flower the lifetime is In the problem we are dealing with, one end of the chain

expected to be of the order of gxpi—(H") ]2 In this s fixed, and the single dynamic variable is associated with
case, the barrier height is controlled by the proximity to thethe end-to-end distance. The diffusion coefficient to be as-
spinodal value of the confinement widkhi™. cribed to the free end differs from that associated with the
From the point of view of potential applications, the situ- center-of-mass motion by a numerical coefficient. This can
ation when the lifetime of the metastable state is not venpe found by establishing a mapping onto the well-known
large may be of particular interest. In this case the estimatesolution [27] for the fundamental relaxation time of the
based on the barrier height only become too crude. We applRouse chain with one end fixedgq,se= (4/37°)N?a,. The
the Fokker-Plank equation formalism to find a more accurateelaxation time of thex component of the end-to-end dis-
estimate for the characteristic decay time of the metastableance taken as a single Gaussian degree of freedom with a
states. A complete description of the coil-flower transitiondiffusion coefficient D is simply r=(KD)™%, where K
kinetics would require solving an equation in a=3/N&?is the elastic coefficient. Identifying this result with
3N-dimensional configuration space. However, since we areyg, .. gives D=(72/4)(N?)™%. Since the time required for a
interested in the slowest process only, the problem is simplicertain displacement is invariant with respect to changing the
fied drastically. Assuming that the slowest mode is associateglynamic variable, (ds)?/D(s)=(d2)?/D. Recalling thats
with the relaxation of the order parameter and all the othekz/(Na), one findsD(s)=72(4N3a%¢) .
degrees of freedom equilibrate quickly, we can write a one- The exponential term eXN®;(s)] is simply the inverse
dimensional Fokker-Plank equation for the probability den-of the Green’s functiorict. Eq. (21)].
sity P(s,t) with the Landau functioiNd(s) playing the role

2 2
of the effective potential: _ Na SL 1 (L
P Teoil = TROUSGBLZ EX% NG 1- §|n N_a . (38
Jd J dP(s,1) I D(s) ) . . . .
EP(S’U = (?—SD(S) —— +P(SYUN——|. (36) A comparison with the direct numerical evaluation of Eq.

(37) shows that the analytical expression E88) is very
HereD(s) is the diffusion coefficient along the configuration accurate almost up to the spinodal.

space path described by the order parametefhe two In the formulation of the escape problem, the control pa-
branches of the Landau functidp(s) are given by Eqs(22)  rameter is the piston separation. In the phase diagram, this
and (26). corresponds to moving along a horizontal path. We note that

The question of whether the relevant part of the fullin this process, the coil lifetime does not depend on the pis-
3N-dimensional dynamics can be adequately described by N separatiorithis is only true for ideal Gaussian chains
reduced 1D equation was investigated very thoroughly bylhe exponential factor contains the barrier heighy;, see
Muthukumar[26] for a problem of a polymer chain translo- Ed. (31), which is determined by the initial choice of the
cation though a hole in a wall. It was demonstrated that thigiston radius and the chain length. If this choice is such that
reduction is remarkably successful, which provides confithe system is close to the coil spinodal line/R,<2, the
dence in the validity of the approach taken here. metastable coil decays with a typical Rouse relaxation time

Standard analysi§27] provides an expression for the Which is of the same order of magnitude as all the other
mean first passage time,;, i.e., the time required by the Ccharacteristic times for the motion of the chain as a whole:

chain initially in the coil state to go to the top of the barrier for realistic chains with the number of segmeNs 500

is given by —1000 this is of order of milliseconds. For lardefR; ratios,
the decay time may be considerably longer, as illustrated by
[ exgNd ()] [° , Fig. 11. For example, iL/R,=8, the coil lifetime is esti-
Teoil = L " Dy _ ds'exp= Ndgoi(s')] mated to be of the order of hours.

The mean first passage time for the chain initially in the
(37) flower state,r, is given by a similar expression:

=1/(\2L) i iti il mini i i exgNdg(s)] [~
wheres;=1/(2L) is the position of the coil minimum with - :J AN®;(s)] ds’ exg- Ny, ()],
finite-chain correction, angy=L/(Na) is the position of the % D(s) s
barrier maximum. The usual way of dealing with this expres- (39)

sion is to approximate the internal integral ogéby extend-
ing the upper limit of integration te,. Then, by definition of The relevant diffusion coefficiend(s) is more difficult to
the Landau function, it has the meaning of the partition func4interpret since the chain is in an inhomogeneous conforma-
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' ' crossing becomes comparable to the time required to get
q from the top of the barrier to the stable minimum, which is
| again of the order ofgyyse

It is useful to give some numerical estimates in order to
get a feeling of the time scales involved. The elementary
1 relaxation time of a segment is typically on the order of
i several nanoseconds, $£0s. This is what is seen, e.g., in
Now (@5.800) | polarized luminescence. Then, the Rouse time will be

“f%\ ~103-107? s for N in the range of 400-1200. Figure 11
8

demonstrates a very strong chain length effect on the equili-
Ha bration time in the vicinity of the binodal point for a fixed
value of the piston radius. Again, this effect is, to a certain

metF;sGtéét :;:@;?;TZ";?danmde?Reﬂﬁ;?:;;i?; zm;slfﬂ)t?f extent, counterintuitive: for a longer chain with= 1200, the
(larg relaxation time will be on the order of 10 s; for a slightly

logarithmic coordinates as a function of the confinement distance - iy - . .
H. The lines marked by the points are found from numerical inte-Sh()rter chain W'thN‘SOO' the relaxation “T”.e Increases to
gration of the Fokker-Plank equation with the exact Landau func-f"‘bOUt an hOl_Jr' W_h”e fON.:400 (not shown it s measured
tion (no approximations and the transition point determined from 1" days. Again this result is attributed to the increasélii.
the actual Landau functions. The lines without the marks are result¥alues.
obtained from calculations according to the analytical asymptotic
formul_as(and the t_ransmon point is calculated from the asymptotic V1. DISCUSSION
analytical expressionThe values oL andN are indicated.

The escape transition refers to an abrupt conformational
tion. However, the main contribution to the integral comeschange from a coil-like state to an inhomogeneous flower
from the barrier region where the stem comprises almost atate as a result of squeezing the polymer chain between two
of the chain. The total friction coefficient of a uniformly pistons. The coil-to-flower transition occurs also in other
stretched chain with one end fixed is simply/2. It follows ~ Situations, namely, when an end-fixed chain is placed near a
that D(s) should be taken aB(s)=2N3,! (which is very liquid-liquid or solid—liquid interface. It was proved that all

close to what was used earlier these models are mathematically equivalent for ideal chains
Asymptotic evaluation of the integral provides the follow- [19]. Within the class of equivalent models demonstrating
ing expression: the coil-to-flower transition, all the results can be easily

transferred from one model to another. In particular, for the
e (H—z_tz) _ - adsorption problem we have performed the analysis in terms
i = Trouss =LHW| —=— |exp(H™*-L)? (40)  of the Yang-Lee theory that relates the phase transition char-
V2 2H™1 acteristics to the distribution of zero’s of the partition func-
tion in the complex plane of the control parameter. In the
where W(x) =exp(-x?) [§ exp(t?)dt is the Dawson integral. present paper, we did not intend to discuss this approach in
The lifetime contains the expected exponential factgr, any detail. However, the formulated analogy allows us to
~exp(Ay). state very confidently that all the features of the complex
Figure 11 displays the lifetimes of metastable states as zero distribution in the escape problem remain the same as
function of the confinement widthH, for several chain in [22].
lengths and piston radii. Below the transition poidt< H”, At this junction we stress once again that the phase tran-
the lifetime of a metastable coil is independent of the consitions of the coil-to-flower type are rather unique. This is
finement width(this is, of course, valid only for ideal chains due to the fact that not only the exact partition function can
considered hepe Above the transition point, the lifetime of be found for finite-size systems, but also the Landau free
the metastable flower state decreases until the escaped partergy containing all the information on the metastable
disappears completely. At the transition point the twostates. The main reason is that the appropriate order param-
branches do not match, which is due to an asymmetry of theter is justifiably defined globally and the fluctuations of the
barrier shape. The difference lies in the preexponential facerder parameter can be calculated exactly. Thus the Landau
tor. Since the first passage time is calculated for the patlfree energy is not a functional but a simple function.
from the bottom of the well to the top of the barri@nd not Note that not all single-chain phase transitions are natu-
to the bottom of the other w@lthere is no contradiction with rally described in terms of a global order parameter. For
the detailed balance argument that would require equal trarinstance, in the coil-globule transition the order parameter is
sition times for equally probable states. Comparing the resimply the local monomer density. Correspondingly, the ki-
sults of numerical integration with exact Landau functionsnetics of the collapse of a coil is governed by the growth and
(doty and the asymptotic analytical expressigsslid lineg  coalescence of multiple nucleation centers, and the initial
we notice thatapart from a small shift on thel axis) the  stages do not necessarily involve any change in the large-
latter provide excellent agreement except for the close vicinscale conformation of the coil. As opposed to that, in the
ity of the spinodal wherey, becomes close to or less than the escape transition the negescapejl phase emerges via a
Rouse relaxation time. In this case the time of the first barriesingle nucleus when the free end of the chain reaches the
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piston edge and forms a seed crown of one or just a fewailed insight in the thermodynamic behavior of the system.
segments; its appearance involves a global change in tHénusual in this system is the fact that the finite size effects
chain conformation. This nucleus is at the top of the nuclethat influence the phase transition are of considerable rel-
ation barrier, and therefore we have to associate this statvance for experimental reasons. Both equilibrium as well as
with the critical nucleus. Note that there is no simple directkinetic aspects were analyzed in detail. From differentiation
analogy for a stable phase nucleus with a smaller than criticadf the partition function we obtained both the compression as
size: In fact such conformation is just in the metastable conwell as the lateral force as a function of the separation be-
figuration, even though it is deformed and therefore awayween the two pistons. In addition to this the average number
from the metastable minimum. Hence, contrary to the stanef confined segments and its fluctuations were analyzed. In
dard picture of nucleation in classical systems, the criticathe thermodynamic limit these characteristics show jump-
nucleus remains the same irrespective of the external parartike behavior which corresponds to the first-order character
eters(or the position in the phase diagranas long as the of the escape transition. In the transition region we showed
metastable state does exist. Of course, the nucleation barrire importance of choosing the type of ensemble. Only for
height does depend on the external parameters, and is detesmall systems the difference between the ensembles disap-
mined by either the stretching free energy alqffier the  pears. To describe the metastable states we analyzed the Lan-
metastable cojlor by its competition with the free energy of dau free energy as a function of the stretching which has
compressior(for the metastable flowgrThe picture of the been identified as the global order parameter of the system.
critical nucleus remains exactly the same in other coil-to-From this it is straightforward to point to the spino@alof
flower transitions induced by a stepwise external potentiathe system and information on the barrier heights separating
[5] or an adsorbing surfad@?]. local and global minima. The Landau free energy is used in a

Once again, it is the fact that the escape transition is adene dimensional Fokker-Plank equation to predict the life-
equately described in terms of a single global order paramtime of the metastable states. All our results are obtained for
eter that allows one to construct a simple theory for bothdeal chains. However, we expect the results to remain quali-
equilibrium and kinetic aspects of this phenomenon. The natatively valid for real chains. Our analysis is expected to be a
ture of the order parameter also dictates the basic mechanisaseful guide for experimental work on single chain confor-
leading to a decay of an unstable state within the spinodahational phase transitions, e.g., by atomic force microscopy
region. For the coil-to-flower transitions, the unstable state iSAFM). Computer experiments in the form of detailed mo-
destroyed by a global conformation change with a simpldecular dynamics simulations may be useful to verify our
Rouse relaxation time. dynamic approach.

Experiments aimed to study these phase transitions may
provide a unique insight into the problem of metastability
and its relation to first-order phase transitions. Experiments
in single-chain conformational phase transitions became This work was partially supported by NWO Dutch-
more feasible with the advent of atomic force microscopyRussian program “Self-organization and structure of bio-
(AFM) [28-33. Preparing the actual slit-like geometry with nanocomposites” and INTAS project 2000-0031. L.K. is
pistons of a radius of a few nanometers and confining a tethgrateful to the Center for Advanced Mathematical Sciences
ered chain in the gap is quite challenging. A perhaps simpleat the American University of Beirut.
version could be realized for an equivalent coil-to-flower
transition involving a solid adsorbing surface.

Although the Landau theory serves as a conceptual basis
for understanding phase transitions, the systems allowing an In a freely jointed chaifFJO one considers the chain to
explicit calculation of the Landau function are limited to be composed of segments with ranking numéed , ... N.
very few examples. Two textbook cases are the Ising ferroThe bonds between neighboring segments have a fixed
magnetic and the Mayer-Saupe thedi84] of isotropic- length and therefore the model differs from the Gaussian
nematic transitio35], both calculated in the mean-field ap- chain in several subtle ways. One important one is that the
proximation. In polymer physics, we have recently FJC has a finite extensibility. Typically, but not necessarily,
introduced exactly solved models for adsorption of an endthe model is elaborated on a lattice and then there are only a
fixed Gaussian chain on liquid-liquigh] and liquid—solid  limited number of places the next segment can go to. All
interfaces[22]. It was the analysis in terms of the Landau these possible places obtain in principle the same statistical
function that demonstrated the mathematical equivalence afieight. In this work a cylindrical coordinate system of lattice
these two models and the escape problem. The analogyites is used. Introducing the coordinatalong the long axis
proved to be very fruitful since it allows one to present theof the lattice with lattice numbers z=-M,, ...,
partition function for the escape problem in a closed analyti—1,0,1, ... M,. In each layez there are lattice sites in the
cal form. radial directionr=0, ... M,. Each ring(z,r) is the locus of a
mean-field approximation where all governing parameters
are homogeneous. The number of lattice kigr) is a func-
tion of r and given byL(z,r)=a{r?-(r-1)?]. The normal-

A careful analysis of the exact partition function of the ized contact area of a lattice site at coordinateith sites at
Gaussian chain squeezed between two cylinders reveals de+ 1 is given by:a(z,r)=2#r/L(z,r). In this cylindrical co-
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ordinate system we assume a simple cubic lattice in the limit To compute the Landau functions for the coil and flower,
of larger value. This means that there exists a limiting steprespectively, it is necessary to solve problems with slightly
probability to go from one layer to a neighboring one which modified boundary and initial conditions. For example, for
is A=1/6. Forfinite values ofr the transition probabilities the coil one it is necessary to know the statistical weight to
depend on the value afbecause of the lattice symmetry.  start at(0,0) and ending az,r) without leaving the gap

Nog-1(r) Aogo(r) Aqa(r) once. This property is c.om_puted by clos-ing. the cylir!der
opening at the edge. This is done by adjusting the piston

() ={ Ao-1r) - Noolr)  Aoa(r) operator, which in this case producesfor all r >L as well,
A1-1(r)  Ngor)  Aaa(r) in addition to the piston coordinates specified above. We ob-
0 1 0 tain G’(z,r,N) where the prime indicates the closed gap

1 boundary condition. The partition function is found after in-
"6 ar-1) 4-am-ar-1) ar) | (A1) tegration over all coordinateg,r) similarly as in Eq.(A3).

0 1 0 The subpartition function for the stem of the flower is
where i=z'-z=-1,0,1 andj=r'-r=-1,0,1 sample the e€xtracted easily. The stem reaches afterl steps the edge
neighboring sites ofz,r). Not all combinations of the values ©f the cylinder for the very first time an@’(z,L,n) is the
of i and j obtain finite step probabilities because diagonalresult for the statistical weight. The partition function for the
steps are excluded. crown that starts at the piston edge is easily found by modi-

The freely jointed chain end point distribution functions fying the initial condition of the walk withN—n segments
are easily generated on this lattice using a propagator formahkow starting not at0,0) but at(0,L), where we assume that
ism. We are going to assume that the chain is grafted withhere are no strong gradients in thelirection. Note that in
one of its ends to the coordinat®,0). This point is just this case the gap is open and the chain is free to reenter the
halfway between the two surfaces of the piston. For convegap. The corresponding end-point distribution function
nience we introduce the piston operai@, which is zero  G”(z,r,N-n) is easily integrated over alk,r) coordinates
when at sitg(z,r), the piston is present and unity otherwise. ;5 optain Q.(N-n). The flower with n segments in the
For example wherH=5 and_L:lO we haved, =0 for stem has now probability Q(H,L,n)=G'(z,L,nQuN
(z,1) €[ld>2Nr<11] and unity elsewhere. —-n)/(27LH), where the normalizationsz_H is necessary to

0 s=1,z#0,r+0 connect the stem to the crown.
19— — In Fig. 1 results are presented for the coil escaping from
_J1 s=1z=0,r=0 . - .
G(zr,s) = _ . an external potential as well as adsorbing onto a solid sur-
2 Ni(NGz-ir-js-15, s>1. face. In these systems again a cylindrical coordinate system
i

is applied, and the chain is grafted by one end on a coordi-
(A2)  nate on the long axi§z’,0). In the adsorption problem the
flat surface is positioned on some coordinate’ +L, i.e., a
distanceL away from the grafting point, and an adsorption
energy gain is assigned to each segment that visits the layer
next to the impenetrable surface. In the step potential prob-
lem the chain is again grafted at the long axis of the cylinder
at (z’,0). Around the coordinate an unfavorable external po-
Q(H,L,N)=>, E L(zr)G(zr,N). (A3) tential is implemented, such that only on coordinates with

z r z>7'+L it can escape from the applied potential.

This means that the start of each walith segmens=1) is
forced to be at the origin and thg, ensures that all walks
that enter into one of the pistons are deleted.

The sum over all end points of walks with—1 stepg(N
segmentgsgives the exact partition function:
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