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An end-tethered polymer chain squeezed between two pistons undergoes an abrupt transition from a con-
fined coil state to an inhomogeneous flower-like conformation partially escaped from the gap. We present a
rigorous analytical theory for the equilibrium and kinetic aspects of this phenomenon for a Gaussian chain.
Applying the analogy with the problem of the adsorption of an ideal chain constrained by one of its ends, we
obtain a closed analytical expression for the exact partition function. Various equilibrium thermodynamic
characteristics(the fraction of imprisoned segments, the average compression, and lateral forces) are calculated
as a function of the piston separation. The force versus separation curve is studied in two complementary
statistical ensembles, the constant force and the constant confinement width ones. The differences in these
force curves are significant in the transition region for large systems, but disappear for small systems. The
effects of metastability are analyzed by introducing the Landau free energy as a function of the chain stretch-
ing, which serves as the order parameter. The phase diagram showing the binodal and two spinodal lines is
presented. We obtain the barrier heights between the stable and metastable states in the free energy landscape.
The mean first passage time, i.e., the lifetime of the metastable coil and flower states, is estimated on the basis
of the Fokker-Planck formalism. Equilibrium analytical theory for a Gaussian chain is complemented by
numerical calculations for a lattice freely jointed chain model.
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I. INTRODUCTION

Phase transitions in macromolecular systems can be fun-
damentally divided into two classes. The first class occurs in
the condensed bulk matter, involves a macroscopically large
number of molecules, and is basically similar to that in ordi-
nary fluids or solids. The size of a single molecule plays only
a minor role in the nature of these transitions at least as far as
the equilibrium aspects are concerned. Crystallization, segre-
gation of incompatible liquids, and liquid-crystalline order-
ing can serve as examples[1–3]. The second class of phase
transitions belongs exclusively to the realm of polymers
since it is realized at the level of a single macromolecule and
does not have any analogy in the physics of low molecular
mass systems. The best-known examples are the coil-globule
[4] and coil-stretch[5] transitions, as well as adsorption at a
solid-liquid interface[6,7].

The concept of a phase transition always requires one to
be in the thermodynamic limit. When the first derivatives of
the free energy change jumpwise at the transition one has to
do with a transition of the first-order type. First-order phase
transitions have a more gradual character in small systems,

e.g., when there is a specific geometry with a large surface-
to-volume ratio. A phase transition on the level of a single
molecule is therefore not obvious; a single macromolecule
always consists of a finite number of segments, usuallyN
,102–106, so that finite-size effects in single-molecule
phase transitions are the rule rather than the exception. As a
result, in real systems the phase transition must remain
smooth. However, if in the(academic) limit of infinite length
of the chain the transition becomes first order, one usually
still refers to the transition as first-order-like, even for
finite N.

The goal of this paper is to present a rigorous analytical
theory for a phase transition in a single macromolecule that
has received much attention recently, namely the escape tran-
sition observed for an end-tethered chain compressed be-
tween two pistons[8–18]. At weak compressions, the chain
is deformed uniformly to make a relatively thick pancake;
the resistance force due to the compressed chain increases
monotonously as the distance between two pistons,H, de-
creases. Beyond a certain critical compression, the chain
changes conformation abruptly. One part of the chain forms a
stem stretching from the anchoring point to the piston edge,
while the remainder of the chain forms a coiled crown out-
side the pistons, thus escaping from underneath the piston.
The resistance force decrease abruptly, indicating a first-
order transition.

First-order transitions are associated with the existence of
metastable states that are stable with respect to small fluc-
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tuations. A metastable state decays with a finite rate, which is
mostly controlled by the nucleation barrier. Metastable states
are especially important for polymer systems. The relaxation
of a metastable conformation involves the reorganization of
many segments of the chain, which makes it intrinsically
slow. A rigorous description of metastable states in polymer
systems that suffer a transition is an outstanding problem of
statistical physics. The difficulty lies in finding the stable and
metastable domains in a multidimensional phase space and
obtaining the height of the barrier that separates them. A
strategic direction in treating these problems is to select an
order parameter and to construct with this the Landau free
energy. Typically, the order parameter has to be defined as a
local fluctuating quantity and the Landau free energy is a
functional of this order parameter field. According to the
fluctuation theory of phase transitions, the importance of the
correlated fluctuations of the order parameters is character-
ized by its relative fluctuations or the Ginzburg number Gi
=sks2l−ksl2d / ks2l, where the averaging is performed over the
region of orderrc

3 defined by the correlation lengthrc [25].
When Gi,1, a simple mean-field approach is applicable. A
very well known example is the transition to a superconduct-
ing state. In the general case of large Gi, the problem be-
comes very involved mathematically and requires renormal-
ization group methods.

In contrast to classical examples of phase transitions such
as liquid–gas or magnetic systems, we will argue that the
escape transition can be described by a global order param-
eter characterizing the polymer chain as a whole, rather than
one of its local properties. Defining the order parameter as a
single global variable eliminates the problem of accounting
for the order parameter fluctuations of various wave vectorqW.
The only fluctuations possible are also of global nature: in
the language of classical examples they are characterized by
qW =0. Although in our problem the Ginzburg number may not
always be small, the fluctuations of the global order param-
eter can be treated exactly in a straightforward way without
resorting to any approximate scheme. This approach was
used for describing the coil-stretch and coil-to-flower transi-
tions[19], and we are going to pursue this path in the present
paper again.

Note that a direct analogy in a classical magnetic system
with a globally defined order parameter is rather trivial since
fluctuations vanish completely in the thermodynamic limit.
However, a single coil-like macromolecule in solution is
anomalous in the sense that its size remains strongly fluctu-
ating (it is of the order of its size) even forN→` [2,3].

The equilibrium properties of the escape transition were
investigated thoroughly by scaling theory[8,9], numerical
calculations[10,15], and computer modeling[13,14,18]. The
main result relates the critical compression distanceH* to the
piston radius,L, and the chain length,Na. For ideal chains, it
is given by H* ,Na/L. Excluded-volume interactions
change the relationship betweenH* and theN/L ratio, H*

,sNa/Ldn/s1−nd, wheren<3/5, but the nature of the transi-
tion remains the same[8,9]. In their pioneering paper based
on the blob picture of the compressed and escaped phases,
Subramanianet al. [8,9] predicted the possibility of meta-
stable states and indicated the broad range of parameters
within which these states exist. They also indicated that the

free energy barrier to be overcome by a compressed chain in
order to escape is due to the elastic free energy invested in
the stretching. However, the kinetic aspects of the problem
were never explicitly investigated. Moreover, even the bar-
rier height determining the lifetime of a metastable escaped
flower was not discussed.

In the following, we analyze the ideal chain case, since it
allows a rigorous treatment. It serves as a good starting point
for understanding more general situations and the escape
transition for ideal chains was investigated very thoroughly
by Enniset al. using numerical methods[10]. We start from
an analogy between an escape transition and a coil-to-flower
transition for a chain near a solid adsorbing surface to con-
struct a closed-form analytical expression for the partition
function. The equilibrium thermodynamic properties of the
transition for chains of arbitrary length follow immediately
from the partition function. To analyze metastable states and
kinetic aspects of the phenomenon we introduce the order
parameter and calculate analytically the Landau free energy.
The complete phase diagram including the coexistence line
and two spinodal lines follows naturally from this result. We
calculate the barrier heights separating the metastable and the
equilibrium states and apply the Fokker-Planck equation for-
malism to find analytically the mean first passage time char-
acterizing the lifetimes of metastable states. When appropri-
ate, numerical results obtained for the ideal freely jointed
chain are presented to complement the arguments.

II. ESCAPE TRANSITION MODEL AND ITS ANALOGIES

We are dealing with an ideal Gaussian chain ofN seg-
ments with the contour lengthNa. The chain is compressed
between two pistons of radiusL and end-anchored at the
center of one of the piston surfaces(Fig. 1). The separation
between the pistons isH.

If the piston size is so large that the chain never leaves the
gap, L.Na, the solution for the Green’s function is well-
known [20]

Gsz,z8d =
2a

H
o
n=1

`

sinSpnz

H
DsinSpnz8

H
Dexp −SpnRg

H
D2

s1d

where z and z8 are the coordinates of the two chain ends
along the axis normal to the piston surface, andRg=aÎN/6 is
the gyration radius of the Gaussian coil. Since we are inter-
ested in the effects due to chain squeezing, the contribution
of the first term in the sum is dominant. With one chain end
attached at distanced from the impenetrable surface, and the
other one being anywhere, the partition function reduces to

QsH,Nd =
4d

H
expS−

N

6
Spa

H
D2D . s2d

Apart from the preexponential term, which can be neglected
(as demonstrated by numerical estimates), the confinement
effect is equivalent to introducing an effective potential per
segment,u=kT/6spa/Hd2. The nature of this effective po-
tential is purely entropic. In the following, we usekT as the
energy unit and omit it in the equations.
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In the general case of arbitraryL and N, when the par-
tially escaped configurations cannot be neglected, the com-
plete solution for the Green’s function is not known. It is
clear, however, that the escape problem can be reduced to
that of a chain in a step potential, which has a constant value
u inside the gap and is zero outside(cf. Fig. 1). This analogy
was first pointed out by Sevick and Williams[16].

The partition function of an end-tethered chain in a step
potential was found in an integral form, but does not have a
simple analytical representation[5]. However, another im-
portant analogy was established recently, namely, between a
chain in the step-potential problem and a chain end-tethered
at some distance away from an adsorbing solid surface[19]
(cf. Fig. 1). This analogy can be easily understood in the
language of effective potentials. The free energy per segment
in the adsorbed part of the chain is −scad2/6 wherec is the
adsorption strength parameter(the de Gennes’ inverse corre-
lation length of adsorption[3]). Hence we are once again
dealing with effects similar to those of a step potential,
which is zero for the part of the chain between the tethered
end and the first segment in contact with the surface, and
−scad2/6 for the rest of the chain. Combining all tree analo-
gies, we conclude that the escape problem can be reduced to
the adsorption problem for a chain end-fixed at distanceL
from a solid surface of adsorption strengthc=p /H. This
reduction is especially important since the adsorption prob-
lem is the only one that admits a closed-form analytical
evaluation of the partition function for chains of arbitrary
length.

Mathematically, the triple analogy was firmly established
[19], and we are going to exploit it extensively.

III. CLOSED FORM OF THE PARTITION FUNCTION
FOR FINITE CHAINS

In the following it will be useful to introduce reduced
values for the piston radius and the confinement. Both quan-

tities will be scaled by the gyration radius of the chain,L̃

=L /2Rg, and H̃=H /pRg. The partition function of the ad-
sorption problem has the following form[6,21]:

Qsc,L,Nd = erfsL̃d + exps− L̃2dYsL̃ − cRgd s3d

whereYsxd=expsx2df1−erfsxdg, and erfsxd is the error func-
tion.

One has also to take into account the overall free energy
shift, Nu, which exists for the chain between two pistons, as
compared to the chain near an adsorbing surface. Finally, the
partition function for the escape problem can be written as
follows:

QsH,L,Nd = exps− H̃−2dherfsL̃d + exps− L̃2dYsL̃ − H̃−1dj.

s4d

The partition function depends explicitly only on two dimen-

sionless scaling variables:L̃ andH̃. The quantityH̃−2 has the
interpretation of the confinement free energy,Nu, per chain
in the imprisoned coil state. The analysis of the adsorption
problem [22] established that there is an abrupt transition
that takes place atc* =L /Rg

2. In the language of the escape
transition, this leads to the binodal condition

H*

a
=

p

6

Na

L
. s5d

The transition is abrupt in the limitsL̃@1 and H̃@1. The
two asymptotic branches of the free energyF=
−ln QsH ,L ,Nd are given by

FIG. 1. Free end-point distributions as found
by numerical freely jointed chain model(for de-
tails see the Appendix) without excluded volume,
for three different systems featuring single chain
conformational phase transitions of the coil-to-
flower type. N=425 in all cases. A, B, C: The
escape from a confinement. The chain is grafted
by one end at the center of two cylindrical pistons
with radiusL=45 and separated by a distanceH
=4, 5, 6 in A, B, and C, respectively. In this ex-
ample radial distributions are shown instead of a
cross section. D, E, F: The escape from a step-
wise external potentialu=p2/ s6H2d with H as in
A, B, C, respectively. G, H, I: The escape towards
the adsorbing surface.c=p /H with H as in A, B,
C, respectively. The systems A, D, and G are the
coil states. The chains in C, F, and I are in the
flower conformation, whereas the systems B, E,
and H are close to the transition point.
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F

N
<5

1

6
Spa

H
D2

, H . H*

p

H

L

N
, H , H* 6 s6d

where we see that there are two natural parameters in the
system,H /a andN/L. We note that since the system is ather-
mal, the free energy is essentially reduced to the entropic
contribution. The two branches are presented in Fig. 2 for
L=90, N=800. The continuations of these branches point to
the possibility of metastable states. Figure 2 shows clearly
the binodal point. Because of the finite length of the chain,
the transition is not yet sharp.

For moderate valuesL̃,1 andH̃,1 all the intermediate
states are important, and they are accounted for in the closed
form of the partition function. Equation(4) allows for the
analytical evaluation of all average characteristics of the es-
cape transition for arbitrary chain lengths.

IV. EQUILIBRIUM CHARACTERISTICS

A. Average number of imprisoned segments

From the analogy with the chain anchored near a step-like
external potential, we know that the average number of seg-
ments between the pistons,kMl, can be found by considering
the free energy as a function of potential per segment,u, and
differentiating it with respect tou. Expressed in terms of the
parameters of the escape problem, it has the following form:

kml =
kMl
N

= 1 −
exps− L̃2 − H̃−2d

QsL̃,H̃d

3H H̃
Îp

− YsL̃ − H̃−1dsL̃H̃ − 1dJ s7d

which definesm as the fraction of confined segments. The
two asymptotic branches are given by

kml < 51, H . H*

3H

pa

L

Na
, H , H* .

s8d

At the transition pointH=H* , kml asymptotically jumps
from the value of unity to one-half. For any finiteN, the
fraction of imprisoned segments at the middle point of the
transition equals 2/3 to a very high accuracy.

Figure 3 demonstrates the curveskml vs H /a for a fixed
piston radiusL /a=45 and three different chain lengthsN
=400, 600, and 800. For large piston separation, all the seg-
ments reside within the confined region. AsH decreases, less
segments remain inside. With increasingN the transition
point shifts to larger values ofH, since longer chains are
easier to squeeze out. Contrary to naive expectations, the
transition becomes less sharp for longer chains(at fixedL).
This is due to the fact that the coil size approaches the piston
size. On the other hand, if one compares the sharpness of the
curves at a fixedL / sNad ratio it is clear that a larger value of
N results in a sharper transition. In the thermodynamic limit
N,L→`, while keeping the rationL /N constantkml has a
jump.

B. Fluctuations of the number of imprisoned segments

Differentiating kml with respect tou give us the reduced
average square of fluctuations in the number of imprisoned
segments,ksdMd2l /N2. These fluctuations are presented in
Fig. 4. As far as theN-dependence is concerned, one can
distinguish three different regimes. At large piston separa-
tions, when the coil is the equilibrium state, fluctuations in
the number of imprisoned segments are completely negli-
gible. Also atH,H* , the equilibrium flower state results in
typical fluctuationsdM ,ÎN, characteristic of standard ther-
modynamic behavior. Finally, near the transition point itself,
the fluctuations inM are proportionate to the total number of
segments,dM ,N, and do not depend on the piston radius,
L. This can be easily understood from the two-state picture,
where the system fluctuates between the coil state with the
fraction of imprisoned segments being equal to 1, and the
flower state with the fraction of imprisoned segments being

FIG. 2. Free energy per segmentF /N as a function of separation
distanceH. Two branches of free energy corresponding to the coil
state(large values ofH) and the flower state(small values ofH) are
dotted;L=90; N=800. The branches cross atH* =4.65.

FIG. 3. Average fraction of imprisoned segmentskml=kMl /N
as a function of the confinement widthH /a for L /a=45 andN
=400, 600, and 800 andL /a=90,N=800(dotted line) as indicated.
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equal to 1/2. The maximum fluctuation is achieved when
these two states have equal probabilities of 1/2, which gives
ksdMd2l=N2/16, which is close to the exact numerical val-
ues. If the chain length,N, is fixed, and instead the piston
radius is changed, the height of the peak remains constant,
while its characteristic width varies asL−2.

The detailed distribution in the number of imprisoned seg-
ments was obtained earlier for the problem of the chain in a
step potential [5,23,24]. The non-normalized statistical
weights are given by the following expressions:

WsMd =5
1

pÎMsN − Md
expF−

M

6
Spa

H
D2

−
3L2

2M
G , M , N

erfS L

2Rg
D , M = N.

s9d

C. Lateral force

There exists a lateral force applied to the anchoring point
where the chain end is attached to the surface of the piston.
This force is given by the derivative of the free energy with
respect toL:

fL =
erfcsL̃ − H̃−1dexps− 2L̃H̃−1d

QsL̃,H̃dH̃Rg

. s10d

The two asymptotic branches are

fL < 50, H . H*

p

H
, H , H* .

s11d

At the transition point,fL jumps from zero toLa/Rg
2. Fig-

ure 5 displays the lateral force as a function ofH /a for the
piston sizesL=45 and chain lengthN=200, 400, and 800. It
is clear that in the confined coil state, the lateral force van-
ishes. Once the escaped conformation appears, the force de-
pends only on the confinement width but not on the chain

length. One can relate the fraction of confined segments dis-
played in Fig. 3 with the corresponding lateral force. When
all the segments reside within the confined region, the lateral
force drops to zero. AsH decreases, more segments escape
from the confinement and the force increases. At the transi-
tion point both the lateral force and the fraction of impris-
oned segments change abruptly. With increasingN the tran-
sition point shifts to larger values ofH, since longer chains
are easier to squeeze out. Again, the transition becomes less
sharp for longer chains, which once more must be attributed
to the fact that, with fixed piston dimensionL and increasing
values ofN, the coil size approaches that of the piston. If
instead one compares the sharpness of the curves at a fixed
L / sNad ratio, it is clear that larger values ofN result in
sharper transitions.

D. Compression force

If the confinement widthH is taken as an independent
variable, the compression force can be obtained by differen-
tiating the free energyF=−ln Q with respect toH:

kfHl =
p2a2

3H3 kMl. s12d

The two asymptotic branches being:

fH <5
p2Na2

3H3 , H . H*

pL

H2 , H , H* .

s13d

In the thermodynamic limit, at the transition point,H=H* ,
the force jumps from 72L3/ spN2a4d to exactly half this
value.

In Fig. 6 the compression force is given for two values of
L andN as indicated. Indeed there is a jump from theH−3 to
the H−2 dependence exactly at the point where part of the
chain escapes from the gap. Again, it is seen that at fixed
ratio L /N the transition becomes more sharp with increasing
chain length.

FIG. 4. Fluctuations of the fraction of imprisoned segments as a
function of confinement widthH /a for L /a=45 andN=400, 600,
and 800 and forL /a=90, N=800 (dotted line) as indicated.

FIG. 5. Lateral forcefL as a function of confinement widthH /a
for L /a=45 andN=200, 400, and 800 and forL /a=90, N=800
(dotted line) as indicated.
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An important observation follows from the figures pre-
sented: in order to observe a sharp change in the properly
calculated equilibrium average characteristics, very long
chains are required, withN at least several hundred. This is
due to the fact that squeezing a chain even down to the
thickness of just 3 segment lengths results in a fairly weak
effective potential per segment,u,0.14.

Thermodynamics introduces the notion of extensive and
intensive variables. As a rule, the total number of particles,
N, and the total volume serve as extensive variables: This
results in the well-known Gibbs-Duhem relationship for the
Gibbs free energy. The system we are dealing with presently
is more intricate. It is clear from Eq.(6) for the limiting form
of the free energy that there is no single variable that is
extensive in the whole range of parameters. Instead, each of
the two branches ofF has its own extensive variable: this is
N for the confined coil state andL for the escaped flower
state. As a result, there are two separate relationships analo-
gous to the Gibbs-Duhem equation. For the coil state,F
=NusHd, and therefore

] u

] H
=

fH

N
. s14d

For the flower state,F=Lsp /Hd=LFLsHd, which leads to

] fL

] H
=

fH

L
. s15d

The fact that an extensive variable does exist implies cer-
tain homogeneity of the system. One would expect this prop-
erty to break down if the coil is squeezed between, e.g.,
curved or nonparallel surfaces.

V. ESCAPE TRANSITION IN THE CONSTANT
FORCE ENSEMBLE

In the literature, there is an extensive discussion on the
features of the escape transition in two different statistical
ensembles: thesN,L ,Hd ensemble, where the confinement
width serves as an independent variable, and thesN,L , fHd
ensemble, where the independent variable is the external
compression force[13,14,16]. The discussion was prompted
by the observation that the average compression force as a
function of the confinement width,kfHlsHd, displays a non-
monotonic behavior. This nonmonotonic form of the force
curve should not be identified as a van der Waals loop; the
force curve crosses the binodal just once, at the transition

point. In other words, the polymer is at each moment during
the escape transition in either the coil or in the flower state,
but these two states never coexist simultaneously[16]. It was
argued though, that in thesN,L , fHd ensemble(where the
compression force is fixed) the curve of the average separa-
tion, kHl, versus fH will contain a vertical segment
[13,14,16]. Of course, this is not possible as we will show
below.

A naive thermodynamic consideration concludes that the
relevant potentials for the two ensembles(the Gibbs and the
Helmholtz free energies) are related to each other by a Leg-
endre transformation:

GsN,L, fHd = FsN,L,Hd + fHH. s16d

From the two asymptotic branches of the Helmholtz energy,
F, given by Eq.(6), and the force,fH, [Eq. (13)], one obtains

GsN,L, fHd = 51

2
N1/3s3pfHd2/3, fH , f*

2spLfHd1/2, fH . f* .

s17d

The two branches match atf* = s 8
3

d4L3/ spN2a4d, this auto-
matically satisfies the Maxwell’s rule for thekfHl vs H iso-
therm, see Fig. 6.

Of course this approach fails to incorporate finite-size ef-
fects. The complete description must be based on the rela-
tionship between the partition functions rather than the ther-
modynamic potentials.

To find the partition function for thesN,L , fHd ensemble
one has to take the number of configurations at a given value
of H, include the Boltzmann weight associated with the ex-
ternal force, exps−fHHd, and integrate over all values of the
piston separationH:

QGsN,L, fHd =E
0

`

QsN,L,Hdexps− fHHddH. s18d

The Legendre transformation(16) for the thermodynamic
potentials follows from this general expression only in the
limit when the integral is reduced to the single contribution
at the maximum of the integrand.

The average widthkHl is given by

kHl =
1

QG
E

0

`

QsN,L,Hdexps− fHHdHdH. s19d

FIG. 6. (a) Average compression forcekfHl as
a function of the confinement widthH /a for
L /a=45, N=400, 600, and 800, andL /a=90, N
=800 as indicated.(b) Normalized average com-
pression force as a function of the normalized
separation, for fixed Na/L=100/15, for N
=100, 200, 400, 800, and 1200 as indicated.f*

was determined from the Maxwell rule.
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Figure 7 demonstrates how one and the same phenom-
enon(escape transition) occurs in complementary ensembles
both in large and in small systems. In this graph we present
on the lefty axis the average compression force normalized
to f* , which is a function of the normalized confinement
width (bottomx axis). In the complementary force ensemble
the average confinementkHl normalized toH* (top x axis) is
found as a function of the confinement force(right y axis).
Both sets of graphs in panels(a) and (b) correspond to the
same ratioL /Na=0.15, but in Fig. 7(a) the system is much
closer to the thermodynamic limit asN=1200 as compared
to the length of the chainN=200 for Fig. 7(b).

From Fig. 7 two observations can be made. First, the two
ensembles are not equivalent in the vicinity of the transition.
The average normalized force jumps by a factor of 2 from
36/29 to 36/210 but the normalized average distance drops
from 72/64 to a value 54/64. Out of the transition region
s54/64dH* ,H, s72/64dH* the two ensembles give the
same force-distance relation.

Second, for small systems the difference between the
force-distance curves obtained in the two ensembles gradu-
ally disappears also in the transition region.

The discussion of the picture of the escape transition in
two ensembles was originally motivated by the analogy with
the gas–liquid transition. It was noted already that this anal-
ogy is not quite straightforward: for the escape transition,
one cannot speak of a simultaneous coexistence of two
phases in the same sense as coexisting liquid and vapor
within the same vessel[25].

A. End-point distributions by numerical lattice calculations

In order to obtain some more detailed information on the
escape problem and to establish the validity range of the
analytical theory for Gaussian chains based on the analogy
with the adsorption and the step-potential problems we have
performed numerical calculations for a freely jointed chain
model on a cylindrical lattice that takes into account the
exact piston geometry. For details we refer to the Appendix.

In particular, we generate the radial end-point distribution
functions and analyze the way they change as a function of
the piston sizeL /a, Fig. 8(in Fig. 1 results are shown for the
case thatH /a was varied at fixedL /a). For N=400 andH
=5a, the chain is clearly confined whenLù46a. For H
ø44a, the chain takes a partially escaped conformation as
the probability of the chain end to remain in the gap between
the pistons becomes a minority.L=45a seems to be close to
the transition point. The distribution is clearly bimodal sug-
gesting the existence of two sets of conformations, and the
two peaks are approximately of the same height. For the
parameters chosen, the analytical theory predicts the binodal
at H* =4.65a, which is very close(one has to keep in mind
some arbitrariness that exists in lattice models when dealing
with distances less than the lattice constant). Bimodality of
the distribution exists for other values ofH /a as well, al-
though it can be discerned only on a log scale. ForH.8a,
the local maximum corresponding to the end positions out-
side the slit disappears suggesting that the flower state be-
comes completely unstable.

The position of the free end may be considered as a can-
didate for the order parameter. Then, the logarithm of the end
distribution will give the Landau free energy. However, this

FIG. 7. Scaled average confinement forcekfH / f*l /H* (left y axis) as a function of the normalized confinement widthH /H* (bottomx
axis) as well as the scaled average confinement widthkH /H*l (top x axis) as a function of the scaled compression forcefH / f* (right y axis)
for Na/L=100/15:(a) N=1200 and(b) N=200.

FIG. 8. End-point distribution for freely jointed chain withH
=5 andN=400, for various values of the piston sizeL as indicated.
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choice fails to fulfill a certain natural requirement, as dis-
cussed in the next section.

B. Order parameter and Landau function

The exact partition function contains contributions from
all chain configurations including those associated with
metastable states(provided the parameter values allow meta-
stability). However, these contributions are masked, and one
has to take special care in order to single them out and ana-
lyze metastable statesper se. The approach of the Landau
theory is ideally suited specifically for this task. In the Lan-
dau theory, all the configurations are first subdivided into sets
associated with a given value of the order parameter,s, and
summation is performed separately within each set. The full
partition function can be obtained then by integrating over
the order parameter:

exp −F =E ds expf− NFssdg s20d

whereFssd is the Landau function, that is, the nonequilib-
rium free energy taken as a function of the order parameter.
In the close vicinity of the transition point, the Landau free
energy is expected to have two minima(one stable and the
other metastable). Our analysis will be focused on finding
the metastable minima and the associated thermodynamic
characteristics, as well as the height of the barrier separating
the local minimum from the global one which determines the
lifetime of the metastable state.

The proper choice of the order parameter is not always
obvious, nor are there any standard recipes for making it.
One criterion is quite clear: the average value of the order
parameter should allow one to distinguish between two
phases. For a first-order transition, the average order param-
eter changes jumpwise. We require that the properly chosen
order parameter changes continuously as the system evolves
from a metastable state, through the transition state at the top
of the barrier, and eventually falls into the equilibrium mini-
mum. As a response to the confinementH, the ideal coil state
is perturbed. Before the chain can escape from the unfavor-
able state, it must be stretched to reach the region outside the
pistons. A seed crown is formed that grows subsequently at
the expense of the stem until the equilibrium state is reached.
In this process, it is the chain stretching parameter that grows
continuously. For the deformed coil, the parameter refers to
the chain as a whole,s= rN/Na, whererN=ÎxN

2 +yN
2 is the

radial distance from the center of the piston(anchoring
point). However, using the chain end position as the order
parameter for the flower state is not appropriate: The result-
ant average order parameter for flower conformations turns
out to be independent of the magnitude of the effective
fields,u. Thus it cannot discriminate between various flower
conformations. Since the field magnitude affects the stretch-
ing of the stem, we choose the order parameter in the flower
conformation as the stretching of the stem only:s= L /na,
where n is the number of segments in the stem. The two
definitions match smoothly atrN=La, n=N.

Accordingly, the Landau function consists of two
branches that have to be introduced separately. Our calcula-

tions are based on the step-potential analogy suggested by
Sevick and Williams[16]. The coil branch is defined as
Fcoilssd=− 1

Nln Gcoilssd, whereGcoilssd is the Green’s function
of the coil between pistons with one end fixed atr =0 and the
other end atrN=sNacalculated under condition that no seg-
ment extends beyondr =L. This is ensured by imposing a
vanishing boundary condition at a fictitious surface placed at
distancer =L+d. Utilizing the results of the standard reflec-
tion method for a 1D problem, the solution for the cylindrical
geometry can be written as

GcoilsrNd =
3rN

Na2expS−
3rN

2

2Na2 − NuDH1 −S1 −
6dL

Na2D
3expF− 6

L

Na2sL − rNdGJ . s21d

Taking d=a/6 according to[5], rewriting everything in
terms of the order parameters, and including the Jacobian of
the transformation,drN/ds=Na, we finally obtain

Gcoilssd = 3Ns expS−
3

2
Ns2 − NuDH1 −S1 −

L

Na
D

3expF− 6
L

Na
S L

Na
− sDGJ . s22d

The maximum value of the order parameter in the coil
state is achieved when the free end is just touching the edge
of the piston.

The flower conformation is inhomogeneous, and only one
part is stretched. The corresponding branch of the Landau
free energy is written as

F f l = −
1

N
lnfGstemsndQcrownsN − ndg. s23d

The stem is defined as a subchain starting from the anchored
chain end and ending with the first segment to reach the edge
of the pistons. Again, the Green’s function of the stem has to
be calculated with the vanishing boundary condition men-
tioned above. The result is well known[5] and for the case of
cylindrical geometry of the space between two pistons has
the following form:

Gstemsnd = 3S L

na
D3

expS−
3L2

2na2 − nuD . s24d

The partition function of ansN−nd-segment chain end-fixed
at the step potentialu was calculated exactly in[23,24] and
is given by

QcrownsN − nd = expS−
usN − nd

2
DI0XusN − nd

2
C s25d

whereI0 is the modified Bessel’s function.
Expressed in terms of the order parameter the restricted

partition function(with the proper Jacobiandn/ds=L /s2a) is
given by
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e−NFf lssd = 3
L

a
s expS−

uL

2as
−

3Ls

2a
−

uN

2
DI0XuN

2
−

uL

2as
C .

s26d

For the escape transition to have an abrupt character, the
following conditions should be satisfied:N@1 anduN@1.
Using the asymptotic representation of the modified Bessel’s
function and neglecting the terms of orderN−1 one arrives at
the following simple analytical expressions:

Fss,Hd < 5
3

2
s2 +

1

6
Spa

H
D2

, sø
L

Na

3L

2Na
s+

L

6Na
Spa

H
D21

s
, sù

L

Na

s27d

where we have expressedu in terms of the confinement
width, H. Integrating over the order parameter according to
Eq. (20), we can recover the partition functions for the coil
and the flower states separately.

The conditions that we have used can be rewritten in
terms ofH in the form Rg/H@1, whereRg is the gyration
radius of a nondeformed coil. It is clear that in this limit the
two natural dimensionless parameters that define all aspects
of the escape transition are the ratio of the confinement width
to the segment length,H /a, and the ratio of the piston radius
to the contour length of the chain,L /Na. The importance of
this choice is due to the fact that both parameters serve as
intensive variables in describing the escape transition.

The Landau free energy calculated according to Eqs.(22)
and (26) is presented in Fig. 9(a) as a function of the order
parameter for various values of the confinement widthH and
for fixed valuesL /a=45, N=400. It is clear that the two
branches of the Landau function match each other ats
=L /Na. Neither the shape of the coil branch nor the point
where the two branches meet depend on the confinement
width H, whereas the flower state branch is of course af-
fected by it. With a decrease inH, the minimum in the flower
branch becomes more pronounced. ChangingH results also
in an overall shift of the Landau free energy curve along the
vertical axes, but this does not have any effect as far as the
transition is concerned.

It is of considerable interest to discuss the relatively small
differences between the Gaussian chain results, Fig. 9(a), and
the freely jointed chain model, Fig. 9(b). Both results apply
to the case that the excluded volume of the chains is ignored,
however, the freely jointed chain has a finite extensibility of
the chain and the Gaussian chain has not. The difference
becomes relevant in the limit of strongly stretched chains.
This means that this is the case for large values of the
stretching parameters. Indeed, inspection reveals that the
curves become insensitive to the value ofH for larges in the
freely jointed chain model, whereas there remains a com-
pression distance dependence in the Gaussian chain case.
Near the transition, however, the finite extensibility effects
are not important. The changes for smalls values are due to
the fact that the finite discretization used in the freely jointed
chain model leads to artifacts for very small values ofH.

C. Binodal and spinodal conditions

The minimum of the Landau function determines the av-
erage value of the order parameter in the(local) minimum of
the system. The binodal condition is found when the two
minima of the Landau function are equally deep. To simplify
the analysis of the binodal and spinodal conditions we use
the asymptotic expression(27) for the Landau free energy, as
opposed to the exact equations illustrated in Fig. 9. Then, the
compressed coil minimum is located ats=0 and has the
depth ofFs0d= 1

6
s pa

H
d2. The minimum corresponding to the

escaped flower state is found atsesc=
pa
3H , its depth being

Fssescd= pL
NH. This leads to the binodal condition of Eq.(5).

With the decrease in the confinement width, the escaped
flower state becomes metastable. Once the height of the bar-
rier separating this minimum from the stable equilibrium
vanishes, metastability is lost. This happens when the posi-
tion of the escaped state minimumsesc coincides with the
position of the barriers0= L

Na. Thus the spinodal condition is
given by

H**

a
=

p

3

Na

L
, s28d

that is, metastability is lost completely when the confinement
width is twice as small as given by the binodal line.

FIG. 9. The Landau free energy as a function of the order parameter forL /a=90, N=800 and various values of the confinement width
H=3, 4, 5, and 8.(a) Analytical results for the Gaussian chain and(b) numerical freely jointed chain model.
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We mentioned earlier that the condition for the escape
transition to be of abrupt nature isRg/H@1. Combined with
the binodal equation, this leads toL/Rg@1. It is clear that in
this case the compressed coil state is metastable irrespective
of the value of the confinement width, since the coil branch
of the Landau function is unaffected by changes inH.

The compressed coil state will become unstable only if
the radius of the piston is comparable to the gyration radius
of coil. Formally, this condition is found by requiring that the
barrier height in the Landau function(calculated for the
whole chain) be equal to 1kT:

Fss0d − Fs0d = N−1 s29d

which yields

S L

Rg
D**

= 2. s30d

D. Barrier heights separating the stable
and the metastable states

The analytical expressions for the Landau free energy al-
low us to compute the height of the barrier separating the
coil and the escaped flower minima. The barrier height
counted from the coil state minimum, in scaling variables, is
simply given by

Dcoil = L̃2 s31d

and has the meaning of the elastic free energy of stretching
the chain to the edge of the piston. The barrier height
counted from the flower state minimum is equal to

D f l = sH̃−1 − L̃d2 s32d

for H̃−1ù L̃. The spinodal condition corresponding to a van-

ishing barrier is written in the scaling variables asH̃** = L̃−1.
From this it is possible to show that the barrier height de-
pends on the proximity to the spinodal:

D f l = fH̃−1 − sH̃** d−1g2. s33d

Finite-size correction to the spinodal condition given by Eq.
(28) can be found by takingD f l ,1 which would give

sH̃−1d** = L̃+1. A more careful consideration also reveals
other finite-size corrections due to the difference between the
exact expression for the partition function of the crown,
given by Eq.(25) and its asymptotic representation that was
used. As follows from the numerical analysis of the transi-
tion kinetics presented below, the actual spinodal condition
for finite chains can be very accurately represented as

sH̃−1d** = L̃ + 1/2. s34d

E. Phase diagram

Figure 10 displays the phase diagram drawn for a finite
chain of lengthN=800. We show the binodal linesL /Nad*

=pa/6H and the spinodal indicating the instability of the in

Eq. (30) and the spinodal line corresponding to the instability
of the flower conformation. The latter spinodal is basically
Eq. (28) including the finite-size effects following from Eq.
(34) and has the form

S L

Na
D**

=
pa

3H
−

a

6Rg
. s35d

We stress that we are interested in studying the region of
universal behavior, where the confinement widthH should
be at least a few segment lengths. The region of extreme
compressionH,1 (not shown in the diagram) was studied
extensively by Enniset al. [10]. Of course, under these con-
ditions the compression entropy and the stem elasticity be-
come strongly dependent on the details of the model used
(lattice vs off-lattice, persistent vs freely jointed, etc., includ-
ing the particulars of the single-segment bond potential).

It is clear then thatL /Na ratio’s allowing the escape tran-
sition to be observed are rather small: forH=3 we get
L /Na<0.15 at the binodal. Combined with the condition
L /2Rg.4 in order to have a fairly pronounced transition,
this leads to a strong requirement on the minimum chain
length: Nù800. For the chain length chosensN=800d, all
the lines nearly merge together atH,10, comparable to the
gyration radiusRg=11.547.

Metastable states and hysteresis effects will be observed
as one moves along the path ABCDEF shown in the phase
diagram(Fig. 10). The first part of the process(ABC) corre-
sponds to a gradual compression of a chain initially residing
in the confined coil state. If the compression proceeds
quickly enough the chain remains in the coil state even
though point C corresponds to the stable flower state. Once
enough waiting time is allowed to reach the stable equilib-
rium, the chain partially escapes and thus the state at point D
is not the same as at C. Now, the path is reversed(DEF) and
the piston separation is gradually increased. At point E, one
finds the metastable escaped flower, but after crossing the
spinodal line 2, this state disappears, and points F and A are
completely equivalent. The changes in the Landau free en-
ergy with decreasingH are shown in Fig. 9.

FIG. 10. Phase diagram including one binodal(1) and two spin-

odal lines(2) and(3) for N=800 in theL̃ /Na andH /a coordinates.
The path following the points ABCDEF will be discussed in the
text.
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F. Transition kinetics

The spinodal condition and the hysteresis effects de-
scribed above are actually of kinetic nature and depend on
the ratio of a typical experimental measurement time and the
internal relaxation time. It is well known that relaxation time
for a process involving barrier crossing is exponential in the
barrier height. Hence we expect the characteristic lifetime of

a metastable coil to be of the order ofeL̃2
independent of the

confinement widthH. For a metastable flower the lifetime is

expected to be of the order of expfH̃−1−sH̃** d−1g2. In this
case, the barrier height is controlled by the proximity to the
spinodal value of the confinement widthH** .

From the point of view of potential applications, the situ-
ation when the lifetime of the metastable state is not very
large may be of particular interest. In this case the estimates
based on the barrier height only become too crude. We apply
the Fokker-Plank equation formalism to find a more accurate
estimate for the characteristic decay time of the metastable
states. A complete description of the coil-flower transition
kinetics would require solving an equation in a
3N-dimensional configuration space. However, since we are
interested in the slowest process only, the problem is simpli-
fied drastically. Assuming that the slowest mode is associated
with the relaxation of the order parameter and all the other
degrees of freedom equilibrate quickly, we can write a one-
dimensional Fokker-Plank equation for the probability den-
sity Pss,td with the Landau functionNFssd playing the role
of the effective potential:

]

] t
Pss,td =

]

] s
DssdF ] Pss,td

] s
+ Pss,tdN

] Fssd
] s

G . s36d

HereDssd is the diffusion coefficient along the configuration
space path described by the order parameters. The two
branches of the Landau functionFssd are given by Eqs.(22)
and (26).

The question of whether the relevant part of the full
3N-dimensional dynamics can be adequately described by a
reduced 1D equation was investigated very thoroughly by
Muthukumar[26] for a problem of a polymer chain translo-
cation though a hole in a wall. It was demonstrated that this
reduction is remarkably successful, which provides confi-
dence in the validity of the approach taken here.

Standard analysis[27] provides an expression for the
mean first passage timetcoil, i.e., the time required by the
chain initially in the coil state to go to the top of the barrier
is given by

tcoil =E
sc

s0

ds
expfNFcoilssdg

Dssd E
−`

s

ds8expf− NFcoilss8dg

s37d

wheresc=1/sÎ2L̃d is the position of the coil minimum with
finite-chain correction, ands0=L / sNad is the position of the
barrier maximum. The usual way of dealing with this expres-
sion is to approximate the internal integral overs8 by extend-
ing the upper limit of integration tos0. Then, by definition of
the Landau function, it has the meaning of the partition func-

tion of the coil state,Qcoil, which can be taken out of the
integral overs. The diffusion coefficientDssd describes the
dynamics in terms of the variables. The conventional trans-
lational diffusion coefficientD for the center-of-mass coor-
dinate of a free-draining chain isD=sNzd−1, wherez is the
friction coefficient per segment. Since the time required for a
certain displacement is invariant with respect to changing the
dynamic variable,sdsd2/Dssd=sdzd2/D. Recalling that s
=z/N, one findsDssd=N−3z−1.

In the problem we are dealing with, one end of the chain
is fixed, and the single dynamic variable is associated with
the end-to-end distance. The diffusion coefficient to be as-
cribed to the free end differs from that associated with the
center-of-mass motion by a numerical coefficient. This can
be found by establishing a mapping onto the well-known
solution [27] for the fundamental relaxation time of the
Rouse chain with one end fixed:tRouse=s4/3p2dN2a2z. The
relaxation time of thex component of the end-to-end dis-
tance taken as a single Gaussian degree of freedom with a
diffusion coefficient D is simply t=sKDd−1, where K
=3/Na2 is the elastic coefficient. Identifying this result with
tRousegives D=sp2/4dsNzd−1. Since the time required for a
certain displacement is invariant with respect to changing the
dynamic variable,sdsd2/Dssd=sdzd2/D. Recalling that s
=z/ sNad, one findsDssd=p2s4N3a2zd−1.

The exponential term expfNFcoilssdg is simply the inverse
of the Green’s function[cf. Eq. (21)].

tcoil = tRouse
Na2

3L2 expS 3L2

2Na2DF1 −
1

2
lnS L

Na
DG . s38d

A comparison with the direct numerical evaluation of Eq.
(37) shows that the analytical expression Eq.(38) is very
accurate almost up to the spinodal.

In the formulation of the escape problem, the control pa-
rameter is the piston separation. In the phase diagram, this
corresponds to moving along a horizontal path. We note that
in this process, the coil lifetime does not depend on the pis-
ton separation(this is only true for ideal Gaussian chains).
The exponential factor contains the barrier heightDcoil, see
Eq. (31), which is determined by the initial choice of the
piston radius and the chain length. If this choice is such that
the system is close to the coil spinodal line,L /Rgø2, the
metastable coil decays with a typical Rouse relaxation time
which is of the same order of magnitude as all the other
characteristic times for the motion of the chain as a whole:
for realistic chains with the number of segmentsN=500
−1000 this is of order of milliseconds. For largerL /Rg ratios,
the decay time may be considerably longer, as illustrated by
Fig. 11. For example, ifL /Rg=8, the coil lifetime is esti-
mated to be of the order of hours.

The mean first passage time for the chain initially in the
flower state,t f l, is given by a similar expression:

t f l =E
s0

sfl

ds
expfNF f lssdg

Dssd E
s

`

ds8expf− NFcoilss8dg.

s39d

The relevant diffusion coefficientDssd is more difficult to
interpret since the chain is in an inhomogeneous conforma-
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tion. However, the main contribution to the integral comes
from the barrier region where the stem comprises almost all
of the chain. The total friction coefficient of a uniformly
stretched chain with one end fixed is simplyNz /2. It follows
that Dssd should be taken asDssd=2N3z−1 (which is very
close to what was used earlier).

Asymptotic evaluation of the integral provides the follow-
ing expression:

t f l > tRouse
p

Î2
L̃H̃WS H̃−2 − L̃2

2H̃−1
DexpsH̃−1 − L̃d2 s40d

where Wsxd=exps−x2de0
x expst2ddt is the Dawson integral.

The lifetime contains the expected exponential factor,t f l
,expsD f ld.

Figure 11 displays the lifetimes of metastable states as a
function of the confinement width,H, for several chain
lengths and piston radii. Below the transition point,H,H* ,
the lifetime of a metastable coil is independent of the con-
finement width(this is, of course, valid only for ideal chains
considered here). Above the transition point, the lifetime of
the metastable flower state decreases until the escaped part
disappears completely. At the transition point the two
branches do not match, which is due to an asymmetry of the
barrier shape. The difference lies in the preexponential fac-
tor. Since the first passage time is calculated for the path
from the bottom of the well to the top of the barrier(and not
to the bottom of the other well) there is no contradiction with
the detailed balance argument that would require equal tran-
sition times for equally probable states. Comparing the re-
sults of numerical integration with exact Landau functions
(dots) and the asymptotic analytical expressions(solid lines)
we notice that(apart from a small shift on theH axis) the
latter provide excellent agreement except for the close vicin-
ity of the spinodal wheret f l becomes close to or less than the
Rouse relaxation time. In this case the time of the first barrier

crossing becomes comparable to the time required to get
from the top of the barrier to the stable minimum, which is
again of the order oftRouse.

It is useful to give some numerical estimates in order to
get a feeling of the time scales involved. The elementary
relaxation time of a segment is typically on the order of
several nanoseconds, 10−8 s. This is what is seen, e.g., in
polarized luminescence. Then, the Rouse time will be
,10−3–10−2 s for N in the range of 400−1200. Figure 11
demonstrates a very strong chain length effect on the equili-
bration time in the vicinity of the binodal point for a fixed
value of the piston radius. Again, this effect is, to a certain
extent, counterintuitive: for a longer chain withN=1200, the
relaxation time will be on the order of 10 s; for a slightly
shorter chain withN=800, the relaxation time increases to
about an hour, while forN=400 (not shown) it is measured
in days. Again this result is attributed to the increase inN/L
values.

VI. DISCUSSION

The escape transition refers to an abrupt conformational
change from a coil-like state to an inhomogeneous flower
state as a result of squeezing the polymer chain between two
pistons. The coil-to-flower transition occurs also in other
situations, namely, when an end-fixed chain is placed near a
liquid–liquid or solid–liquid interface. It was proved that all
these models are mathematically equivalent for ideal chains
[19]. Within the class of equivalent models demonstrating
the coil-to-flower transition, all the results can be easily
transferred from one model to another. In particular, for the
adsorption problem we have performed the analysis in terms
of the Yang-Lee theory that relates the phase transition char-
acteristics to the distribution of zero’s of the partition func-
tion in the complex plane of the control parameter. In the
present paper, we did not intend to discuss this approach in
any detail. However, the formulated analogy allows us to
state very confidently that all the features of the complex
zero distribution in the escape problem remain the same as
in [22].

At this junction we stress once again that the phase tran-
sitions of the coil-to-flower type are rather unique. This is
due to the fact that not only the exact partition function can
be found for finite-size systems, but also the Landau free
energy containing all the information on the metastable
states. The main reason is that the appropriate order param-
eter is justifiably defined globally and the fluctuations of the
order parameter can be calculated exactly. Thus the Landau
free energy is not a functional but a simple function.

Note that not all single-chain phase transitions are natu-
rally described in terms of a global order parameter. For
instance, in the coil-globule transition the order parameter is
simply the local monomer density. Correspondingly, the ki-
netics of the collapse of a coil is governed by the growth and
coalescence of multiple nucleation centers, and the initial
stages do not necessarily involve any change in the large-
scale conformation of the coil. As opposed to that, in the
escape transition the new(escaped) phase emerges via a
single nucleus when the free end of the chain reaches the

FIG. 11. The normalized mean first passage timet /tRouseof the
metastable flower(large H) and the metastable coil(small H) in
logarithmic coordinates as a function of the confinement distance
H. The lines marked by the points are found from numerical inte-
gration of the Fokker-Plank equation with the exact Landau func-
tion (no approximations), and the transition point determined from
the actual Landau functions. The lines without the marks are results
obtained from calculations according to the analytical asymptotic
formulas(and the transition point is calculated from the asymptotic
analytical expression). The values ofL andN are indicated.
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piston edge and forms a seed crown of one or just a few
segments; its appearance involves a global change in the
chain conformation. This nucleus is at the top of the nucle-
ation barrier, and therefore we have to associate this state
with the critical nucleus. Note that there is no simple direct
analogy for a stable phase nucleus with a smaller than critical
size: In fact such conformation is just in the metastable con-
figuration, even though it is deformed and therefore away
from the metastable minimum. Hence, contrary to the stan-
dard picture of nucleation in classical systems, the critical
nucleus remains the same irrespective of the external param-
eters(or the position in the phase diagram), as long as the
metastable state does exist. Of course, the nucleation barrier
height does depend on the external parameters, and is deter-
mined by either the stretching free energy alone(for the
metastable coil) or by its competition with the free energy of
compression(for the metastable flower). The picture of the
critical nucleus remains exactly the same in other coil-to-
flower transitions induced by a stepwise external potential
[5] or an adsorbing surface[22].

Once again, it is the fact that the escape transition is ad-
equately described in terms of a single global order param-
eter that allows one to construct a simple theory for both
equilibrium and kinetic aspects of this phenomenon. The na-
ture of the order parameter also dictates the basic mechanism
leading to a decay of an unstable state within the spinodal
region. For the coil-to-flower transitions, the unstable state is
destroyed by a global conformation change with a simple
Rouse relaxation time.

Experiments aimed to study these phase transitions may
provide a unique insight into the problem of metastability
and its relation to first-order phase transitions. Experiments
in single-chain conformational phase transitions became
more feasible with the advent of atomic force microscopy
(AFM) [28–33]. Preparing the actual slit-like geometry with
pistons of a radius of a few nanometers and confining a teth-
ered chain in the gap is quite challenging. A perhaps simpler
version could be realized for an equivalent coil-to-flower
transition involving a solid adsorbing surface.

Although the Landau theory serves as a conceptual basis
for understanding phase transitions, the systems allowing an
explicit calculation of the Landau function are limited to
very few examples. Two textbook cases are the Ising ferro-
magnetic and the Mayer-Saupe theory[34] of isotropic-
nematic transition[35], both calculated in the mean-field ap-
proximation. In polymer physics, we have recently
introduced exactly solved models for adsorption of an end-
fixed Gaussian chain on liquid–liquid[5] and liquid–solid
interfaces[22]. It was the analysis in terms of the Landau
function that demonstrated the mathematical equivalence of
these two models and the escape problem. The analogy
proved to be very fruitful since it allows one to present the
partition function for the escape problem in a closed analyti-
cal form.

VII. CONCLUSIONS

A careful analysis of the exact partition function of the
Gaussian chain squeezed between two cylinders reveals de-

tailed insight in the thermodynamic behavior of the system.
Unusual in this system is the fact that the finite size effects
that influence the phase transition are of considerable rel-
evance for experimental reasons. Both equilibrium as well as
kinetic aspects were analyzed in detail. From differentiation
of the partition function we obtained both the compression as
well as the lateral force as a function of the separation be-
tween the two pistons. In addition to this the average number
of confined segments and its fluctuations were analyzed. In
the thermodynamic limit these characteristics show jump-
like behavior which corresponds to the first-order character
of the escape transition. In the transition region we showed
the importance of choosing the type of ensemble. Only for
small systems the difference between the ensembles disap-
pears. To describe the metastable states we analyzed the Lan-
dau free energy as a function of the stretching which has
been identified as the global order parameter of the system.
From this it is straightforward to point to the spinodal(s) of
the system and information on the barrier heights separating
local and global minima. The Landau free energy is used in a
one dimensional Fokker-Plank equation to predict the life-
time of the metastable states. All our results are obtained for
ideal chains. However, we expect the results to remain quali-
tatively valid for real chains. Our analysis is expected to be a
useful guide for experimental work on single chain confor-
mational phase transitions, e.g., by atomic force microscopy
(AFM). Computer experiments in the form of detailed mo-
lecular dynamics simulations may be useful to verify our
dynamic approach.
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APPENDIX: FREELY JOINTED CHAIN MODEL

In a freely jointed chain(FJC) one considers the chain to
be composed of segments with ranking numbers=1, . . . ,N.
The bonds between neighboring segments have a fixed
length and therefore the model differs from the Gaussian
chain in several subtle ways. One important one is that the
FJC has a finite extensibility. Typically, but not necessarily,
the model is elaborated on a lattice and then there are only a
limited number of places the next segment can go to. All
these possible places obtain in principle the same statistical
weight. In this work a cylindrical coordinate system of lattice
sites is used. Introducing the coordinatez along the long axis
of the lattice with lattice numbers z=−Mz, . . . ,
−1,0,1, . . . ,Mz. In each layerz there are lattice sites in the
radial directionr =0, . . . ,Mr. Each ringsz,rd is the locus of a
mean-field approximation where all governing parameters
are homogeneous. The number of lattice siteLsz,rd is a func-
tion of r and given byLsz,rd=pfr2−sr −1d2g. The normal-
ized contact area of a lattice site at coordinater with sites at
r +1 is given by:asz,rd=2pr /Lsz,rd. In this cylindrical co-
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ordinate system we assume a simple cubic lattice in the limit
of large r value. This means that there exists a limiting step
probability to go from one layer to a neighboring one which
is l=1/6. Forfinite values ofr the transition probabilities
depend on the value ofr because of the lattice symmetry.

li jsrd = 1l−1−1srd l−10srd l−11srd
l0−1srd l00srd l01srd
l1−1srd l10srd l11srd

2
=

1

61 0 1 0

asr − 1d 4 − asrd − asr − 1d asrd
0 1 0

2 sA1d

where i =z8−z=−1,0,1 and j =r8−r =−1,0,1 sample the
neighboring sites ofsz,rd. Not all combinations of the values
of i and j obtain finite step probabilities because diagonal
steps are excluded.

The freely jointed chain end point distribution functions
are easily generated on this lattice using a propagator formal-
ism. We are going to assume that the chain is grafted with
one of its ends to the coordinates0,0d. This point is just
halfway between the two surfaces of the piston. For conve-
nience we introduce the piston operatordz,r which is zero
when at sitesz,rd, the piston is present and unity otherwise.
For example whenH=5 and L=10 we havedz,r =0 for
sz,rdP fuzu.2ù r ,11g and unity elsewhere.

Gsz,r,sd =5
0 s= 1,zÞ 0,r Þ 0

1 s= 1,z= 0,r = 0

o
i,j

li,jsrdGsz− i,r − j ,s− 1ddz,r s. 1.

sA2d

This means that the start of each walk(with segments=1) is
forced to be at the origin and thedz,r ensures that all walks
that enter into one of the pistons are deleted.

The sum over all end points of walks withN−1 steps(N
segments) gives the exact partition function:

QsH,L,Nd = o
z

o
r

Lsz,rdGsz,r,Nd. sA3d

To compute the Landau functions for the coil and flower,
respectively, it is necessary to solve problems with slightly
modified boundary and initial conditions. For example, for
the coil one it is necessary to know the statistical weight to
start at s0,0d and ending atsz,rd without leaving the gap
once. This property is computed by closing the cylinder
opening at the edge. This is done by adjusting the piston
operator, which in this case produces 08 for all r .L as well,
in addition to the piston coordinates specified above. We ob-
tain G8sz,r ,Nd where the prime indicates the closed gap
boundary condition. The partition function is found after in-
tegration over all coordinatessz,rd similarly as in Eq.(A3).

The subpartition function for the stem of the flower is
extracted easily. The stem reaches aftern−1 steps the edge
of the cylinder for the very first time andG8sz,L ,nd is the
result for the statistical weight. The partition function for the
crown that starts at the piston edge is easily found by modi-
fying the initial condition of the walk withN−n segments
now starting not ats0,0d but ats0,Ld, where we assume that
there are no strong gradients in thez direction. Note that in
this case the gap is open and the chain is free to reenter the
gap. The corresponding end-point distribution function
G9sz,r ,N−nd is easily integrated over allsz,rd coordinates
to obtain QcsN−nd. The flower with n segments in the
stem has now probability QsH ,L ,nd=G8sz,L ,ndQcsN
−nd / s2pLHd, where the normalization 2pLH is necessary to
connect the stem to the crown.

In Fig. 1 results are presented for the coil escaping from
an external potential as well as adsorbing onto a solid sur-
face. In these systems again a cylindrical coordinate system
is applied, and the chain is grafted by one end on a coordi-
nate on the long axissz8 ,0d. In the adsorption problem the
flat surface is positioned on some coordinatez=z8+L, i.e., a
distanceL away from the grafting point, and an adsorption
energy gain is assigned to each segment that visits the layer
next to the impenetrable surface. In the step potential prob-
lem the chain is again grafted at the long axis of the cylinder
at sz8 ,0d. Around the coordinate an unfavorable external po-
tential is implemented, such that only on coordinates with
z.z8+L it can escape from the applied potential.
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